DOI QR코드

DOI QR Code

Performance of SOFC According to Thickness of Shell with Ni-YSZ Core-shell

Ni-YSZ Core-shell에서 Shell의 두께에 따른 SOFC의 출력특성

  • CHOI, BYUNG-HYUN (Energy material Center, Korea Institute of Ceramics Engineering & Technology) ;
  • HONG, SUN-KI (Energy material Center, Korea Institute of Ceramics Engineering & Technology) ;
  • JI, MI-JUNG (Energy material Center, Korea Institute of Ceramics Engineering & Technology)
  • 최병현 (한국세라믹기술원 에너지소재센터) ;
  • 홍선기 (한국세라믹기술원 에너지소재센터) ;
  • 지미정 (한국세라믹기술원 에너지소재센터)
  • Received : 2017.11.21
  • Accepted : 2017.12.29
  • Published : 2017.12.31

Abstract

SOFC anode fabricated core-shell using machano-fusion method using core with submicron size Ni, nano size YSZ for shell. Using prepared core-shell, depending on the thickness of the shell, we studied how the characteristics of sintering and SOFC cell change by sintering the anode. The Ni-YSZ core-shell has a Ni core of 0.5 to $1.2{\mu}m$ over 2 to 7 YSZ of 15 to 20 nm is, and as the high speed mixing time increases, the YSZ number increases and the shell thickness becomes uniform increased. When the fuel electrode is manufactured with core-shell, it has superior sintering property, has grain of uniform size compared with the one synthesized by general mixing, the falling path is short, the conductors (electrons and ions) connection is excellent, the electrical conductivity has become excellent. The thicker the shell, the lower the electrical conductivity. When the thickness of shell ranged from 46 to 139 nm and 61 to 81 nm, the performance was the highest and the ASR was the smallest.

Keywords

References

  1. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced Anodes for High-temperature Fuel Cells", Nat. Mater.,Vol. 3, 2004, pp. 17-27. https://doi.org/10.1038/nmat1040
  2. Z. Zhu and S. C. Deevi, "A Reivew on the Status of Anode Materials for Solid Oxide Fuel Cells", Mater. Sci. Eng. A, Vol. 362, No. 1, 2003, pp. 1229-1239.
  3. S. P. Jiang and S. H. Chan, "A Review of Anode Materials Development in Solid Oxide Fuel Cells", J. Mater. Sci., Vol. 39, No. 14, 2004, pp. 4405-4439. https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  4. M. J. Lee, B. H. Choi, M. J. Ji, Y. T. An, S. K. Hong, Y. J. Kang, and H. J. Hwang, "Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0-0.15)(M=Co, Fe) Alloy Powder for SOFC Anode", J. Kor. Ceram. Soc., Vol. 51, No. 4, 2014, pp. 367-373. https://doi.org/10.4191/kcers.2014.51.4.367
  5. R. M. C. Clemmer and S. F. Corbin, "Influence of Porous Composite Microstructure on the Processing and Properties of Solid Oxide Fuel Cell Anodes", Solid State Ionics., Vol. 166, No. 3, 2004, pp. 251-259. https://doi.org/10.1016/j.ssi.2003.12.009
  6. T. Fukui, S. Ohara, and K. Mukai, "Long-Term Stability of Ni-YSZ Anode with a New Microstructure Prepared from Composite Powder", Electrochem. Solid-State Lett., Vol. 1, 1998, pp. 120-122.
  7. S. D. Kim, H. Moon, S. H. Hyun, J. Moon, J. Kim, and H. W. Lee, "Performance and Durability of Ni-coated YSZ Anodes for Intermediate Temperature Solid Oxide Fuel Cells", Solid State Ionics., Vol. 177, No. 9, 2006, pp. 931-938. https://doi.org/10.1016/j.ssi.2006.02.007
  8. S. P. Jing, "Sintering Behavior of Ni/Y2O3-ZrO2 Cermet Electrodes of Solid Oxide Fuel Cells", J. Mater. Sci., Vol. 38, No. 18, 2003, pp. 3775-3782. https://doi.org/10.1023/A:1025936317472
  9. S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, and S. A. Hong, "Improvement of Anode Performance by Surface Modification for Solid Oxide Fuel Cell Running on Hydrocarbon Fuel", J. Power Sources., Vol. 136, No. 1, 2004, pp. 30-36. https://doi.org/10.1016/j.jpowsour.2004.05.002
  10. M. Marinsek, K. Zupan, and J. Macek, "Preparation of Ni-YSZ Composite Materials for Solid Oxide Fuel Cell Anodes by the Gel-percipitation", J. Power Sources., Vol. 86, No. 1, 2000, pp. 383-389. https://doi.org/10.1016/S0378-7753(99)00425-5
  11. P. Duran, J. Tartaj, F. Capel, and C. Moure, "Processing and characterisation of a fine nickel oxide/zirconia/composite prepared by polymeric", J. Eur. Ceram. Soc., Vol. 23, No. 12, 2003, pp. 2125-2133. https://doi.org/10.1016/S0955-2219(03)00028-1
  12. Y. Okawa, T. Matsymoto, T. Doi, and Y. Hirata, "Thermal stability of nanometer-sized NiO and Sm-doped ceria powders", J. Mater. Res., Vol. 17, No. 9, 2002, pp. 2266-2274. https://doi.org/10.1557/JMR.2002.0333
  13. G. Q. Shao, H. Cai, J. R. Xie, X. L. Duan, B. L. Wu, R. Z. Yuan, and J. K. Guo, "Preparation of nanocomposite Ni/YSZ cermet powder by EDTA complexes.gel conversion process", Mater. Lett., Vol. 57, No. 21, 2003, pp. 3287-3290. https://doi.org/10.1016/S0167-577X(03)00049-1
  14. D. Simwonis, H. Thulen, and F. J. Dias, "Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix(R) process", J. Mater. Process. Technol., Vol. 92, 1999, pp. 107-111.
  15. S. T. Aruna, M. Muthuraman, and K. C. Patil, "Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells", Solid State Ionics, Vol. 111, No. 1, 1998, pp. 45-51. https://doi.org/10.1016/S0167-2738(98)00187-8
  16. Y. T. An, B. H. Choi, M. J. Ji, K. J. Lee, and H. J. Hwang, "New fabrication technique for a Ni-YSZ composite anode from a core-shell structured particle", Solid State Ionics, Vol. 207, 2012, pp. 64-68. https://doi.org/10.1016/j.ssi.2011.11.013
  17. C. H. Kuo and P. K. Gupta, "Rigidity and Conductivity Percolation Thresholds in Particulate Composites", Acta. Metall. Mater., Vol. 43, No. 1, 1995, pp. 397-403. https://doi.org/10.1016/0956-7151(95)90296-1
  18. Y. J. Kang, S. K. Hong, Y. T. An, B. H. Choi, and M. J. Ji, "Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-Shell Structure", J. Kor. Meter., Vol. 53, No. 4, 2015, pp. 287-293. https://doi.org/10.3365/KJMM.2015.53.4.287