• Title/Summary/Keyword: Mixed-mode Loading

Search Result 142, Processing Time 0.031 seconds

Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens (점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측)

  • Lee, Hyeong-Il;Choe, Jin-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Smart sensors for monitoring crack growth under fatigue loading conditions

  • Giurgiutiu, Victor;Xu, Buli;Chao, Yuh;Liu, Shu;Gaddam, Rishi
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Structural health monitoring results obtained with the electro-mechanical (E/M) impedance techniqueand Lamb wave transmission methods during fatigue crack propagation of an Arcan specimen instrumented with piezoelectric wafer active sensors (PWAS) are presented. The specimen was subjected in mixed-mode fatigue loading and a crack was propagated in stages. At each stage, an image of the crack and the location of the crack tip were recorded and the PWAS readings were taken. Hence, the crack-growth in the specimen could be correlated with the PWAS readings. The E/M impedance signature was recorded in the 100 - 500 kHz frequency range. The Lamb-wave transmission method used the pitch-catch approach with a 3-count sine tone burst of 474 kHz transmitted and received between various PWAS pairs. Fatigue loading was applied to initiate and propagate the crack damage of controlled magnitude. As damage progressed, the E/M impedance signatures and the waveforms received by receivers were recorded at predetermined intervals and compared. Data analysis indicated that both the E/M impedance signatures and the Lamb-wave transmission signatures are modified by the crack progression. Damage index values were observed to increase as the crack damage increases. These experiments demonstrated that the use of PWAS in conjunction with the E/M impedance and the Lamb-wave transmission is a potentially powerful tool for crack damage detection and monitoring in structural elements.

A Study on Fatigue Crack Propagation of Random Short Fiber SMC Composite (非規則性 短纖維强化 SMC複合材料의 疲勞龜裂 進展에 관한 硏究)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 1989
  • The fatigue crack propagation of random short fiber SMC composite material was investigated. In macroscopic viewpoint, SMC composite material was treated as isotropic material and was analyzed in terms of conventional fracture mechanics. Experiments were conducted on mode I and mixed respectively and various loading level was applied to each mode. Fatigue crack growth can be explained in three steps and most of fatigue life is consumed in initial crack growth. In this experiments, power law, i.e, da/dN=C(C.DELTA.K)$^{m}$ , between fatigue crack growth rate and stress intensity factor range, was valid and the value of the exponent m is about 10, which is much higher than that of other metals. Fracture mechanism was also investigated by SEM fractographic study.

Study on Crack Propagation of Concrete beam under Mixed-Mode Loading by Minimum Strain Energy Density Failure Criterion (최소 변형 에너지 밀도 기준에 의한 콘크리트 보의 균열전파에 관한 연구)

  • 진치섭;이영호;신동익;오정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.529-534
    • /
    • 1998
  • To find out an adequate failure criterion in two-dimensional linear elastic crack problems, finite element programs, SED, which determine stress intensity factors $K_I, K_{II}$, crack angle and peak load by the minimum strain energy density failure criterion were developed. In this program, the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singular elements with 6 nodes were used. The results of SED were compared with the results of those which followed by the maximum circumferential tensile stress criteria and those by the maximum energy release rate criteria and those by Jenq and Shah`s experiments of the same geometry and material properties. The maximum energy release rate criteria were better close to those of the Jenq and Shah`s experiments than the maximum circumferential tensile stress criteria and the minimum strain energy density criteria.

  • PDF

A Finite Element Method for Localized Failure Analysis of Concrete (콘크리트에서 국소화된 파괴해석을 위한 유한요소법)

  • 송하원;김형운;우승민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

Interference between two dynamic cracks (동적 균열의 간섭)

  • 이억섭;최인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.714-718
    • /
    • 1996
  • The interference phenomenonof a dynamic crack propagation in a inclined DEN(double edge notched) specimen has been investigated by using the dynamic photoelasticity. One crack initiated by static loading is propagated dynamically and experiences a mixed mode condition(interference) as the crack approaches to the inclined edge notch. We use the overdeterministic least-square method to extract dynamic $K_{Id}$ K sub IId/and .sigma. $_{ox}$from the recorded dynamic photoelastic pattern surounding a running crack. The evaluated $K_{Id}$ $K_{IId}$and .sigma. $_{ox}$together with the crack propagation velocity estimate the dynamic crack interference phenomenonenonon

  • PDF

Mechanical Behavior of Fiber Metal Laminates with Local Delamination Defects (국부적 적층분리결함을 갖는 섬유금속적층판의 기계적 거동 특성)

  • Choi, Heungsoap;Choi, Hyungjip;Choi, Wonjong;Ha, Minsu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • In this paper, the interlaminar crack problems of a fiber metal laminate (FML) under generalized plane deformation are studied using the theory of anisotropic elasticity. The crack is considered to be embedded in the matrix interlaminar region (including adhesive zone and resin rich zone) of the FML. Based on Fourier integral transformation and the stress matrix formulation, the current mixed boundary value problem is reduced to solving a system of Cauchy-type singular integral equations of the 1st kind. Within the theory of linear fracture mechanics, the stress intensity factors are defined on terms of the solutions of integral equations and numerical results are obtained for in-plane normal (mode I) crack surface loading. The effects of location and length of crack in the 3/2 and 2/1 ARALL, GLARE or CARE type FML's on the stress intensity factors are illustrated.

  • PDF

Application of Weight Function Method to Elliptical Surface Cracks in Mechanical Joints (기계적 체결부에 존재하는 타원형 표면균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol;Hyun, Cheol-Seung;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.165-170
    • /
    • 2000
  • The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions in that only the stress analysis of an uncracked model is required. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical surface cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. Results for the different number of terms in weight function are presented.

  • PDF

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.