• Title/Summary/Keyword: Mixed-Integer Linear Programming

Search Result 135, Processing Time 0.032 seconds

A Study on the Optimal Warehouse Location Problem by Using the Branch & Bound Algorithm (창고입지선정문제(倉庫立地選定問題)의 최적해법(最適解法)에 관한 연구(硏究))

  • Lee, Deuk-U;Lee, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 1986
  • This paper deals with the problem of the optimal location of warehouses in the two stage distribution system, i.e., the distribution system where the product is transported from plants to customer areas via warehouses. The Problem is formulated with a zero-one mixed integer programming and an efficient branch and bound algorithm is then used to solve the problem. In order to obtain the solution of this problem, this paper shows the procedure of conversion of two stage distribution system into one stage distribution system. An improved method of solving the linear programming at the nodes and branching decision rule is also showed by this study.

  • PDF

Optimization-Based Pattern Generation for LAD (최적화에 근거한 LAD의 패턴생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.409-413
    • /
    • 2005
  • The logical analysis of data(LAD) is an effective Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a new optimization-based pattern generation methodology and propose two mathematical programming medels, a mixed 0-1 integer and linear programming(MILP) formulation and a well-studied set covering problem(SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with much ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Discrete Choice Dynamic Pricing and Seat Control Problem in Airlines (항공사 이산형 동적가격 결정 및 좌석통제 문제)

  • Yoon, Moon-Gil;Lee, Hwi-Young;Song, Yoon-Sook
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Revenue management problems originated in the 1970's in the context of the airline industry have been successfully introduced in airline industries. It has started on the capacity control by booking classes for available seats, and has been recognized as a powerful tool to maximize the total revenue. Changing customer behavior and airline market environments, however, has required a new mechanism for improving the revenue. Dynamic pricing is one of innovative tools which is to adjust prices according to the market status. In this paper, we consider a dynamic pricing and seat control problem for discrete time horizon. The problem can be modeled as a stochastic programming problem. Applying the linear approximation technique and given the price set for each time, we suggest a mixed Integer Programming model to solve our problem efficiently. From the simulation results, we can find our model makes good performance and can be expanded to other comprehensive problems.

Optimal scheduling for multi-product batch processes under consideration of non-zero transfer times and set-up times

  • Jung, Jae-Hak;Lee, In-Beum;Yang, Dae-Ryook;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.30-35
    • /
    • 1993
  • Simple recurrence relations for calculating completion times of various storage polices (unlimited, intermediate storages(FIS), finite intermediate storages(FIS), no intermediate storage(NIS), zero wait(ZW) for serial multi-product multi-unit processes are suggested. Not only processing times but also transfer times, set-up (clean-up) times of units and set-up times of storages are considered. Optimal scheduling strategies with zero transfer times and zero set-up times had been developed as a mixed integer linear programniing(MILP) formulation for several intermediate storage policies. In this paper those with non-zero transfer times, non-zero set-up times of units and set-up times of storages are newly proposed as a mixed integer nonlinear programming(MINLP) formulation for various storage polices (UIS, NIS, FIS, and ZW). Several examples are tested to evaluate the robustness of this strategy and reasonable computation times.

  • PDF

A Lagrangian Relaxation Approach to Capacity Planning for a Manufacturing System with Flexible and Dedicated Machines

  • Lim, Seung-Kil;Kim, Yeong-Dae
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.47-65
    • /
    • 1998
  • We consider a multiperiod capacity planning problem for determining a mix of flexible and dedicated capacities under budget restriction. These capacities are controlled by purchasing flexible machines and/or new dedicated machines and disposing old dedicated machines. Acquisition and replacement schedules are determined and operations are assigned to the flexible or dedicated machines for the objective of minimizing the sum of discounted costs of acquisition and operation of flexible machines, new dedicated machines, and old dedicated machines. In this research, the Problem is formulated as a mixed integer linear Program and solved by a Lagrangian relaxation approach. A subgradient optimization method is employed to obtain lower bounds and a multiplier adjustment method is devised to improve the bounds. We develop a linear programming based Lagrangian heuristic algorithm to find a good feasible solution of the original problem. Results of tests on randomly generated test problems show that the algorithm gives relatively good solutions in a reasonable amount of computation time.

  • PDF

The Research of Layout Optimization for LNG Liquefaction Plant to Save the Capital Expenditures (LNG 액화 플랜트 배치 최적화를 통한 투자비 절감에 관한 연구)

  • Yang, Jin Seok;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • A plant layout problem has a large impact on the overall construction cost of a plant. When determining a plant layout, various constraints associating with safety, environment, sufficient maintenance area, passages for workers, etc have to be considered together. In general plant layout problems, the main goal is to minimize the length of piping connecting equipments as satisfying various constraints. Since the process may suffer from the heat and friction loss, the piping length between equipments should be shorter. This problem can be represented by the mathematical formulation and the optimal solutions can be investigated by an optimization solver. General researches have overlooked many constraints such as maintenance spaces and safety distances between equipments. And, previous researches have tested benchmark processes. What the lack of general researches is that there is no realistic comparison. In this study, the plant layout of a real industrial C3MR (Propane precooling Mixed Refrigerant) process is studied. A MILP (Mixed Integer Linear Programming) including various constraints is developed. To avoid the violation of constraints, penalty functions are introduced. However, conventional optimization solvers handling the derivatives of an objective functions can not solve this problem due to the complexities of equations. Therefore, the PSO (Particle Swarm Optimization), which investigate an optimal solutions without differential equations, is selected to solve this problem. The results show that a proposed method contributes to saving the capital expenditures.

Study of Multi Floor Plant Layout Optimization Based on Particle Swarm Optimization (PSO 최적화 기법을 이용한 다층 구조의 플랜트 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.475-480
    • /
    • 2014
  • In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines for connecting equipment. However, what is the lacking of considerations in previous researches is to handle the multi floor processes considering the safety distances for domino impacts on a complex plant. The mathematical programming formulation can be transformed into MILP (Mixed Integer Linear Programming) problems as considering safety distances, maintenance spaces, and economic benefits for solving the multi-floor plant layout problem. The objective function of this problem is to minimize piping costs connecting facilities in the process. However, it is really hard to solve this problem due to complex unequality or equality constraints such as sufficient spaces for the maintenance and passages, meaning that there are many conditional statements in the objective function. Thus, it is impossible to solve this problem with conventional optimization solvers using the derivatives of objective function. In this study, the PSO (Particle Swarm Optimization) technique, which is one of the representative sampling approaches, is employed to find the optimal solution considering various constraints. The EO (Ethylene Oxide) plant is illustrated to verify the efficacy of the proposed method.

Study on the Layout of Process Facilities considering Inherent Safety Design (본질적인 안전 설계를 고려한 공정 설비의 배치에 관한 연구)

  • Kim, Young-Hun;So, Won;Yoon, En-Sup
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.245-256
    • /
    • 2010
  • 최근 들어 안전관리의 패러다임은 사후분석에서 사전예방으로 바뀌고 있다. 이러한 추세에 맞추어 본질적인 안전관리에 대한 관심이 늘어나고 있다. 공정에 본질적인 안전을 추구하는 방법은 크게 5가지로 나누어 질 수 있으며, 공정의 배치를 통해서 사고를 영향을 최소화하는 방법은 공정의 설계단계에서 적용할 수 있는 좋은 방법이다. 본 연구에서는 공정의 설비가 가지는 위험성을 기반으로 안전거리에 대한 지침을 제시하고 있다. 사고결과와 사고발생빈도를 기반으로 개인적 위험성(Individual Risk: IR)을 계산하였으며, 계산된 값을 기반으로 최적의 안전거리 계산을 수행할 수 있었다. 계산된 IR과 문헌에서 제시된 안전거리를 바탕으로 작업자가 거주하는 건물과 공정경계 까지의 적절한 거리와 설비간의 최적의 거리를 계산하게 된다. Mixed Integer Linear Programming(MILP)를 이용하여 각각설비의 안전거리가 확보된 시설물 배치와 최소 부지 면적 등을 알 수가 있다. 이 연구를 통해 최적화된 부지면적과 파이프라인의 시설물 배치는 물론 공정건설이나 초기 디자인 단계 및 안전성확보측면에서 본질적인 안전을 구현하는데 유용하게 적용될 수 있다.

  • PDF

Cost-Efficient Virtual Optical Network Embedding for Manageable Inter-Data-Center Connectivity

  • Perello, Jordi;Pavon-Marino, Pablo;Spadaro, Salvatore
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.142-145
    • /
    • 2013
  • Network virtualization opens the door to novel infrastructure services offering connectivity and node manageability. In this letter, we focus on the cost-efficient embedding of on-demand virtual optical network requests for interconnecting geographically distributed data centers. We present a mixed integer linear programming formulation that introduces flexibility in the virtual-physical node mapping to optimize the usage of the underlying physical resources. Illustrative results show that flexibility in the node mapping can reduce the number of add-drop ports required to serve the offered demands by 40%.

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF