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A Lagrangian Relaxation Approach to Capacity

Planning for a Manufacturing System with
Flexible and Dedicated Machines

Seung-Kil Lim * Yeong-Dae Kim

Abstract

We consider a multiperiod capacity planning problem for determining a mix of flexible and dedicated

capacities under budget restriction. These capacities are controlled by purchasing flexible machines and/or

new dedicated machines and disposing old dedicated machines. Acquisition and replacement schedules are

determined and operations are assigned to the flexible or dedicated machines for the objective of

minimizing the sum of discounted costs of acquisition and operation of flexible machines, new dedicated

machines, and old dedicated machines. In this research, the problem is formulated as a mixed integer

linear program and solved by a Lagrangian relaxation approach. A subgradient optimization method is

employed to obtain lower bounds and a multiplier adjustment method is devised to improve the bounds.

We develop a linear programming based Lagrangian heuristic algorithm to find a good feasible solution of

the original problem. Results of tests on randomly generated test problems show that the algorithm gives

relatively good solutions in a reasonable amount of computation time.

1. Introduction

To survive today's highly competitive
environments, many companies are planning to
upgrade their production equipment, and some
flexible

automation., In general, to upgrade production

are already moving towards

equipment, flexible manufacturing modules
(FMMs) and/or new dedicated machines may
be acquired, and old dedicated machines may
be disposed at the same time, A typical
FMM consists of a multi-functional machining
center with automatic tool and pallet changers
and a tool magazine, and a material handling

device. An FMM can perform a wide variety
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of operations, while a dedicated machine can
perform only one type of operations such as
drilling operations or milling operations. On the
other hand, acquisition and operation costs
required for a dedicated machine are lower
than those for an FMM. Therefore, both
flexiblities of FMMs and lower costs of
dedicated machines should be considered
simultaneously in  upgrading  production
equipment.

There are some previous research results
related to acquisition of flexible machines and
disposal/replacement of existing dedicated
machines. Fine and Freund [3] and Roth ef
al [16] determine optimal capacities of
flexible and dedicated systems using stochastic
and dynamic model, respectively. With a
deterministic =~ model, Rajagopalan [14]
determines an optimal mix of flexible and
dedicated capacities for a case of multiple
products with a nondecreasing demand
pattern. By relaxing the assumption of
nondecreasing demand, Rajagopalan and
Soteriou [15] develop a more realistic model
that deals with capacity acquisition, disposal
and replacement decisions. As in other studies
on the deterministic capacity acquisition
problem, Li and Tirupati [10, 11] solve
capacity expansion problems considering
tradeoffs between economies of scale and
scope for cases with general and dynamic
demand patterns.

Capacity planning and operations assignment

have been considered simultaneously in other

rescarch. Bard and Feo [1] develop a
single-period nonlinear cost model that can be
used to determine the number of machines to
be purchased as well as the fraction of time
each machine should be configured for a
particular type of operations. As extensions of
the model, Suresh [17] and Lim and Kim
[13] develop multiperiod replacement models
under phased implementation strategies.
Although budget restriction and demand
uncertainty are not considered explicitly in
most of previous research, Karabakal et al [8]
and Lim and Kim [13] consider the former in
their deterministic model, while Chakravarty
[2], Gupta et al [7] and Li and Tirupati
(12] consider the latter. On the other hand, Li
and Qiu [9] study the impact of operational
factors on the decisions of capacity acquisition
and technology choice.

In this paper, we consider a multiperiod
capacity planning problem for determining a
mix of flexible and dedicated capacities under
budget restriction. These capacities are
controlled by purchasing flexible machines
and/or new dedicated machines and disposing
old dedicated machines, Acquisition and
replacement schedules are determined and
operations are assigned to the flexible or
dedicated machines for the objective of
minim_izing the sum of discounted costs of
acquisition and operation of flexible machines,
new dedicated machines, and old dedicated
machines, This problem 1is a generalized

version of the problem studied in Lim and
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Kim [13], which is based on the assumptions
that new dedicated machines cannot be
purchased during the planning horizon and
acquired FMMs are fully utilized up to their
capacities if possible. In the generalized
problem of the current study, however, it is
assumed that new dedicated machines are
available and that FMMs may be
underutilized if using dedicated machines costs
less. For the generalized problem, we present
a mixed integer linear programming model
and develop a solution procedure based on the

Lagrangian relaxation approach.

2. Mathematical Model

First, we state the assumptions made in

this research.

1) Technological improvements can be
predicted, that is, technologies (FMMs
and dedicated machines)
available and anticipated within the
planning horizon are known in advance,

2) Demands and process plans for the
products are known.

3) Acquired FMMs and dedicated machines
are not retired during the planning
horizon, and initially, there is no FMM.

4) A dedicated machine disposed in any
period of the planning horizon cannot be
redeployed during the remaining periods.

5) A dedicated machine can process only

currently -

one type of operations, In this research,
operations are classified into types
according to the similarity of operations
(e.g. drilling operations and turning
operations).

6) There is no salvage value for dedicated
machines. (Salvage values are often low
enough to be ignored, especially for

obsolete dedicated machines.)

The following is notation used in the
formulation for the capacity planning problem,
) index for operation types or
dedicated machines, ¢ = 1, 2, ..., ]
j index for FMMs, 7 =1, 2, ..., J
t index for time periods, t =1, 2 .. T
D; work amount (requirements) of
operation type 7 (to be performed)
in period ¢ (This is determined from
process plans and demands for the
products.)
Af; acquisition costs of a type- j FMM
in period {
AP acquisition costs of a new dedicated
machine of type 7 in period ¢

Cﬁ, operation costs for processing one
unit work of operation type 7 on a
type- j FMM in period ¢

Cf,’D operation costs for processing one
unit work of operation type 7 on a

new dedicated machine of type ¢

in period f
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operation costs for processing one

unit work of operation type 7 on
an old dedicated machine of type i
in period ¢

amount of work that a type-j

FMM can do to process operation

type ¢ in period ¢ when the FMM
is configured to process only that
type

amount of work that a new

dedicated machine of type 7 can do
to process operation type ¢ in
period ¢t if the capacity of the

machine is fully utilized

amount of work that an old

dedicated machine of type ¢ can do
to process operation type ¢ in
period t if the capacity of the
machine is fully utilized

present worth of the budgets that
can be spent over the planning
horizon

discount factor

(i+p)”,

rate)

in period ¢ (ie.

where p is the discount

number of type-; FMMs acquired
in period ¢

number of new dedicated machines
of type ¢ acquired in period ¢

equals 1 if one or more old

dedicated machines of type i are

used in period £, and 0 otherwise
(ie. zz = 0 if all of the old
dedicated machines are disposed in
period ¢ or earlier)

fraction of type-j flexible capacity
which is allocated to operation type
7 in period ¢
fraction of capacilty of newly
acquired dedicated machines of type
7 which is used to satisfy demand
of operation type ¢ in period f
fraction of capacity of existing
dedicated machines of type ¢ which
is used to wsatisfy demand of

operation type 7 in period ¢

Now, we present a mixed integer linear

programming formulation of the problem.

(P) Minimize

PN ARSI LA AN

7ot TR

+ Z Z rtCill)u/ileir + Z Z ’,,Aiirvnv"
Tor T

z

+ZZ"'C:,DW,':VD31'I (1
T 1
I/I/l]fhijf+plli!l) sit+VVi1N De,.,ZD,.,
Vi, t (2)
erlAjI;yjt +ZZ’}AiIIVDVn <B
TG 3 (3)
14
hy<> v, .
Z ijt ; J vj, t (4)
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,.-va Vi, £ (5)
5, Sz, Vi, t (6)
2,<z,, Vi, t (7
¥,20 and integer vj, t (8)
v,20 and integer Vi, t (9)
z, {0} Vit (10)
hy, 20 Vi, jt (11)
€, 20 Vi, t (12)
0<s, <1 vi, ¢ (13)

The objective function to be minimized
denotes the sum of acquisition and operation
costs of FMMs and new dedicated machines,
and costs for operating old dedicated
machines.  Constraints (2) ensure that
demands for each operation type during the
planning horizon should be satisfied by
acquired FMMSs, old dedicated machines, or
new dedicated machines.
represents the budget limit, while constraints
(4) represent allocations of flexible capacities
to operation types. Constraints (5) and (6)
determine fractions of new and existing
dedicated capacities which are used to satisfy
work  requirements for  the
Constraints  (7)

restrictions imposed by one of the assumptions

operations,
respectively. specifies
made in this study, ie, an old dedicated
machine may not be redeployed during the

planning horizon once it is disposed.

Constraint  (3)

3. Lagrangian Relaxation

Approach

In this research, the Lagrangian relaxation
approach is employed to solve (P).
Foundations of the Lagrangian relaxation
theory and some early successful applications
are summarized in Fisher [4, 5] and Geoffrion
[6]. In this study, the original problem (P) is
relaxed by dualizing constraint (2) with
Lagrangian multipliers A,;<0. The resulting
relaxed problem is:

(LRx )Minimize

ZZrAﬁy,ﬂrZZZ(ﬂ +1,Ca Wiy
+ZZ(,1 +rCPYWPs,

+Z’:ir,ANDv +ZZ(,1 +r,CIP W e,
—ZZ D,

subject to (3), (4), (5), (6), (), (8), (9),
(10), (11), (12), (13) and
A#<0 for all 7 and ¢ (14)

This relaxed problem can be decomposed
into two independent subproblems, (SP1) and
(SP2), as follows. While (SP1) is associated
with acquisition of FMMs and new dedicated
machines and allocations of their capacities to
operation types, (SP2) is associated with use
of capacities of old dedicated machines and
disposal of the machines,

(SP1) Minimize
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+zZrANDv,,+ZZ(/1 +.CYPW e,
i t

subject to (3), (4), (6), (8), (9}, (11), (12)
and (14)

(SP2) Minimize
ZZM +1,CW s,

subject to (6), (7), (10), (13) and (14)

We can compute a lower bound on the
objective function value of the optimal solution
(to be called the optimal value for brevity
throughout the paper) of the original problem
by solving these subproblems. For given A,,
L(A), which is a solution of (LRa) and also
a lower bound for (P), can be obtained using
solutions of (SP1) and (SP2), denoted by 11(4)
and L2(A4), respectively, as follows. Here, 4
denotes the vector of which the elements are
A

it

L) =L1W)+L2A) - XX 2D, .

3.1. Solution procedures for the relaxed
problems

Solving (SP1) for given A

First, we give a property which
characterizes an optimal solution of (SP1). For

given Ay, let i, =arg mm (A Wy +1r.CoWs)

for all 7 and ¢t Throughout the remainder of

this section, we drop the subscripts of i for

notational simplicity.
Proposition 1. Assume yj and v} are
optimal to (SP1) for given Ay. Then, In an
optimal solution for (SP1), hy and ey

satisty the following:

1
Zy;u if i=i and

u=]

(a) b= AWy +rCiWi) <0
0 otherwise 15

(b) e‘ = Zv;u {f(lnn/")vb +rCNDwND)<0
it T Y u=l

0 otherwise (16)

Proof. Note that %" and €' can be
determined independently. We first prove the

optimality of %", If k" satisfies constraints (4)

and the operation costs in the objective

function of (SP1), ZZZ@ +1C Wy by
iojo

have a minimum value at A*, k"is optimal

Since y* is an optimal solution of (SP1), A"
given by (15) satisfies constraints (4).
Obviously, 4, =0 is an optimal solution when
AWS +rCowr 20, When AW +r,CiW; <0,

Z Z Z (A +rCHW i hy, is minimum if g

is set as equation (15) since }»”WU‘,r +rC5,WUF, <

A, WUf +’C; W,f for all 7. This completes the

proof for part (a). The optimality of e® can

be proved similarly. ®»
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In proposition 1, the term 2 w7 (or 4,W,%")
can be considered as benefits that can be
obtained by using FMM j(or a new dedicated
machine of type 7) to process operation type
in period ¢t if A; is interpreted as value of

operation type ¢ in period £ In addition,
rCaW,s (or r,C°W,P)is the discounted
operation cost incurred when a type-j FMM
{or a new dedicated machine of type i7)
processes operation type ¢ in period .
Therefore, (a) means that it is best to use an
FMM to process an operation type that is
best for the FMM if net profits (benefits
minus costs) are positive. Similarly, (b) means
that it is optimal to use all available capacities
of new dedicated machines if net profits of
using them are positive,

Constraints (4) and (5) can be eliminated
using proposition 1. Since it is optimal to
assign the whole capacity of each FMM to its
best-suited operation type if the net profits
are positive, the following substitution can be
made in (4) for all j and f and in the
objective function of (SP1),

hy 1>

u=l

if i=fand(4, +r,C/)W, <0

0 otherwise

Similarly, the following substitution can be

made for e;.

zvm if(A, +nCYW* <
e

it = Y u=l

0 otherwise

With these substitutions, (4) and (5) can
be eliminated and the objective function can
be modified to

1
2.2 lndpy, + Q) min{(A;, +r.Ch W, 04+
it u=]

ND
PUZ s
i t

v, + (O v, )min{(4, +,C;" W, 03]
u=l

an
To simplify this objective function, we

introduce the following notation.

M,=rd; +me{l W, +r,C; W, 0},

ip" ijp?
p=t

T
L, =14+ min{A,W)° +r,CPW," 0}.

ip ?
p=t

With this notation, the first and second
term of the modified objective function can be

simplified as follows,
ZZ[rA,.y,, +(Z_;y,..)mm{(ﬂ +rCo W, "0

=Y [{rdfy, + min(A4, W, +nCEW]0)y )+
J

i1 il Py1"" 12

{n A5y, +min(4; ZWU'; + rZCUF 2WUF2 ,0)
a4yt
{r,Af,ij+mm(/L w. +rTCFW,)

iT " yT iyr

(yjl+yj2+'"+yj1‘)}]

ip ijp " P ijp?

T
=Y [{ndl + Y min(A, Wi +r,CE Wl 00}y, +
J p=1

{rzAF2+ min(A, Wi +r,Ce Wik 00}y, +..+
y j

up ip " ijp?
p=2

{ry Al +min(A, Wy +r,C/ W 00y r}]

i’ T
=Z{Mjlyjl+Mj2yj2+"'+MjTij}
J

= ZzMﬂyﬂ'
7 ot
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The second term of (17) can be simplified
similarly using L;. As a result, we have the

following objective function of a simpler form.

XMy, +X3 Ly,
it i1

By the above elimination and simplification,
(SP1) can be converted into the following
knapsack problem.

(SP1K)

Z(B)=Maxy 3 {-M,y,}+ > Y {~L,v,}

subject to
LAyt n A v, < B
j o1 it
¥,20 and integer Vj, t
v, 20 and integer Vi, t

We solve this knapsack problem uing a
dynamic programming recursion. Since the
computation time for the DP procedure used
in this study depends on the number of
variables (v, and v;) and the budget, it is
necessary to reduce the number of variables
and to scale input parameters. We can reduce
the number of variables with the following
property, for which the proof is omitted here

because it is trivial.

Proposition 2. For given A, the following
are satisfied in an optimal solution of (SPI1).
(@ If M,>0, then y;, =0.
®) If L,>0, then v, =0.

Note that M; is composed of the

acquisition cost of a type-7 FMM in period t
and the sum of positive net profits (or
negative costs) from period t to the end of
the planning horizon, i.e. gmi“{‘vp%*’yc':;%i’()}’
which can be obtained pfrom processing an
operation fype that is best for the FMM.

Similarly, L, consists of the acquisition cost of

a new dedicated machine of type 7 in period ¢
and the sum of positive net profits (or
negative costs) from period ¢ to the end of the
planning horizon, ie. imin{li,W;,;‘D+r,C,»‘,\,DW.-;,\D,0}
Therefore, proposition ? implies that the sum
of positive net profits should be greater than
acquisition costs in order to justify purchase of
an FMM or a new dedicated machine. Using
the above proposition, we «can eliminate
variables that should be equal to 0 in an
optimal solution.

Since an optimal solution of (SPI1K) is also
optimal for (SP1), the optimal value for
(SP1) is

L1(2)=2Z(B).

Solving (SP2) for given A

The following proposition characterizes an

optimal solutionm, s% and z} of(SP2). Let

f,=arg max{tls,.‘, =1}

Proposition 3. In an optimal solution of
(SP2), we have

@ s o{l TG ARCIWP <0
" lo otherwise
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® 7 1 t=12,..1
z, = N
o t=f+1.,T

Proof. (a) and (b) are obvious since sj and
2z determined by (a) and (b) are feasible
and the objective function, ZZ(&” WS,

has a minimum value al s%. ®

Therefore, the optimal value for (SP2),
denoted by L2(4), is

L2(4)= Z Z (4, +",C" )W: it*
it

With the above solutions for the two

subproblems for given A, we obtain a solution
of (LRa), which gives a lower bound on the

optimal value of (P), as follows.

L(A)=L1(A)+L2(A)—ZZ 2Dy |

3.2. Finding the Best Multipliers

To find a better lower bound, we need to

find better wvalues for the Lagrangian
multipliers, A;. In the following, we present a

solution method for the following Lagrangian
dual problem (PL) to find the best

multipliers.

(PL) Maximize L( A )
subject to 450

Note that solutions of (PL) serve as lower
bounds for (P).

Subgradient Optimization Method
To solve (PL), we use the subgradient

optimization algorithm described in [4]. At

iteration r, subgradient vector 0" is deter-

mined by

0, =Y Wih, +W's,+ W, e, - D

ijt "Hijt it Vit it?
J

where hj, sy and ey are the optimal
solutions for (LRa) obtained at iteration r.
Given the multipliers at iteration r, A%,
multipliers for the next iteration are generated
by A= min{Ai+ w,0% 0} for all j and ¢,
where , is a positive scalar step size, A
commonly used step size at iteration r is

, = u,(Z" - LX

©#,<2 is a

positive scalar, Z° is an upper bound on the
optimal value of (PL) and [l ® || denotes the
norm of vector ®.

Initially, the wvalue for u, is set to 2
(29=2) and it is halved when the solution

of (LRax) has not increased for a given
number of iterations. It is reported that this
rule performs well empirically, even though it
is not guaranteed fo satisfy the sufficient
condition for convergence to the optimal

solution [4].

Multiplier Adustment Method

We develop a multiplier adjustment
method to improve the lower bound computed

at each iteration of the subgradient optimi-
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zation method. The basic idea of the multiplier

adjustment method is to increase the constant

term in (LRa), —lell,-,D,-,. by decreasing

some multipliers further down to negative
values which are set to zero in the
subgradient optimization method. We describe
the muitiplier adjustment method in a form of
a procedure in the following. This procedure is
applied to results from each iteration of the

subgradient optimization method.

Procedure 1 (Multiplier adjustment)

Step 1. Let R = { (i, lA;=0 and
D,— W2>0}. If R is empty, stop
this procedure. Otherwise, go to
step 2.

Step 2. Compute

rCEWL + A WEY—rCEWE

S/ = " ijt (] it ijt
it

F
7

for all (7,t) € R and j.

Step 3, Compute

V,=maxd] for all (i,/)eR
J

forall (7, ) € R,

Step 4. Adjust multipliers

Ay < Ay, +max{V,,—r,C"}

1

forall (i, &) € R.

Note that coefficients of kg, /=1, 2, ... J
are changed if Aj;(currently zero since(z, £)
€ R) is decreased to a negative value. When

Ay= 8’,:,. the coefficient of #&; becomes

For F - e .

nCiwr+ Wy, In addition, is 5/ negative
: F F F Fuy F

since (AW, +rCo W, ) <rCuWy.

Therefore, coefficients of h;s become greater

than or equal to those of A,s  when

A = max 6?,. Consequently, M, does not
change since all 7s remain the same, if Ays
for all (i, ) ER are changed from zero to
V s Similarly, L; does not change even
though A, is decreased to — r,C1}’,D since the
coefficient of e; in the objective function,
WP+ 7, CYPW, P, becomes zero,
Therefore, the optimal value of (SP1) does

not change since M; and L; are not
changed by the above multiplier adjustment.
On the other hand, the optimal value of
(SP2) may be decreased by change in the
multipliers. Since N; may be changed by
modifying the multipliers, # may be changed
as well. When #; is changed by a unit, the
optimal value of (SP2) can be decreased by
up to V,-,W,p, which is the amount of
decrease in N, However, this decrease can
be compensated for by the increase in the
objective function of (PL), which is — ¥V zD;.
Since Dy— W0 for (i, t) €R. the net
increase in the lower bound,
(’§E%V,-,(D,-,— WP), is always greater than

or equal to zero. Therefore, a lower bound

obtained with the multiplier adjustment
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method is always greater than or equal to the
bound that can be obtained without it.

Initial Multipliers

Commonly, initial multipliers are set to zero
in the subgradient optimization method.
However, we suggest another method, in
which  initial multipliers are set as
A = min[0, max{(max—r,C;)), —rCi® -rCP}]

for all ¢ and ¢ The basic idea of this
initialization is to increase the constant term
(—ZZZA,-,D,Q as much as possible by
decreasing multipliers while fixing both of the
optimal values of (SP1) and (SP2) at zero.
Note that miz_tx(— 7C¥E) is a value for A,
which makes coefficients of #&y's in the
objkctive function of (SP1) geater than or
equal to zero. Similarly, —7»,CP and

~7,CS are values for A; that make

coefficients of e; and s; equal to zero in the

objective functions of (SP1) and (SP2),
respectively. Consequently, all coefficients in
the objective functions of (SP1) and (SP2)
become greater than or equal to zero when

initial multipliers are set with this method.

4. Lagrangian Heuristic

In this paper, we develop a Lagrangian

heuristic in which a linear programming based

procedure is used for finding good feasible
solutions. A basic idea of the procedure is to
purchase FMMs and new dedicated machines

for which the corresponding variables, y; s
and wvy's became positive frequently (or

those that were frequently selected) during
the subgradient optimization method. Based on
the frequency of being selected, priorities of
FMMs and new dedicated machines are
determined in each period. That is, priorities
of FMMs and new dedicated machines,

denoted by P, and @Q; are set zero initially,

and then increased by one if yj and v}

became positive after each iteration of the
subgradient optimization method.

In the subgradient optimization method, an
upper and a lower bound values are commonly
set to a large number and zero, respectively.
However, we compute an initial upper and a
lower bound values to obtain good initial step
size. (wp) that may help to improve
convergence of the subgradient optimization
method. The initial lower bound is set to the
maximum value of two lower bounds, ie., the
optimal value of a linear program obtained by
relaxing integrality constraints of i v; and
zy in (P), and the lower bound obtained
from the iitial Lagrangian multipliers, On the
other hand, the initial upper bound is obtained
using the procedure (Procedure A) given in

the appendix with priorities determined as



58 Seung-Kil Lim - Yeong-Dae Kim

RESENRAE

P, =ZW,.Jf/|Ilr,A§ for all j,1,
Q, =W Ir4" for all it.
The following procedure describes a

Lagrangian  heuristic developed for the
capacity planning problem considered in this
study. The heuristic can generate several
alternative feasible solutions to obtain a good
feasible solution by setting two parameters (4

and b).

Procedure 2 (Lagrangian heuristic)
Step 0. Set N = 0, P,=0 and Q;=0

for all 4 j, t and initialize
Lagrangian multipliers using the
method suggested in this paper and
compute initial lower and upper
bounds.

Solve the subproblems, (SP1) and
(SP2) using a DP algorithm and
proposition 3. Let P;~P;+1 and

Step 1.

Q:—Q;+1 and for all (4, ) and
(7, t) pairs such that y3;>0 and

vy>0. If the solutions are feasible
to (P), terminate. The current
solution is optimal, Otherwise, go to
Step 2.
Step 2 If N is a multiple of /i, go to Step
3. Otherwise, modify Lagrangian
multipliers using the subgradient
method. Apply
Procedure 1 and let N-N+1. Go

to Step 1.

optimization

Step 3 Find a feasible solution using
Procedure A, Update the
incumbent solution if a Tbetter

solution is found. Reset P;=0 and
Qy=0 for all 7, j, and ¢t If Nis

greater than a  predetermined
maximum iteration count (k),
terminate. Otherwise, modify
Lagrangian multipliers usihg the
subgradient optimization method.
Apply Procedure 1 and let

N—N+1. Go to Step 1.

In the suggested algorithm, two parameters,
L and b, are set to 200 and 5000, respectively.
Therefore, 26 feasible solutions (including an
initial feasible solution) are generated to find a
feasible solution. Although the chance to find
a better feasible solution may be increased as
the number of alternative feasible sclutions to
be generated is increased, those values for h
and b were selected considering computational
burden and solution quality of the Lagrangian
heuristic. Note that the same feasible solutions
may be generated from two consecutive
values of N, when N is large (since

Lagrangian multipliers may converge).

5. Computational Results

To evaluate the performance of the
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heuristic algorithm, computatuional tests were
done on 135 test problems, five problems for
each of all combinations of three levels for the
number of operation types (12, 16, 20), three
levels for the number of FMM types (8, 12,
16) and three levels for the planning horizon
(5, 10, 15). Other data were generated from
probability distributions with parameters that
are summarized in Table 1, in which DU(a,
b) and U(a, b) denote the discrete uniform
distribution with range [a, b), and the
uniform  distribution with range (a, b),
respectively. For computational convenience,
the discount factor is not considered ( 7, is set
to 1 for all £) in the test problems, but
obviously, the difficully of the problem

remains the same with #1. The heuristic

algorithm was coded on C++ and a
subroutine of CPLEX 4.0 was used to solve
linear programs in Procedure A. Tests were
done on a personal computer with a Pentium

11 processor operating at 266MHz clock speed.

Test results are given in Table 2, which
show the average, minimum and maximum
duality gaps of the heuristic solutions and
CPU times for each problem set. The
(percentage) gap represents the percentage
deviation of the heuristic solution value from
the best lower bound obtained from the
Lagrangian relaxation. The overall average

gap was 3.98% (the gap was 7.15% in the

{Table 1> Parameters used for problem generation

Data

Probability distributions

Acquisition costs of an FMM ( 4 )
Operation cost of an FMM ( Cj; )

Capacity of an FMM ( ¥ )

Acquisition costs of a new dedicated machine ( 4;° )

Operation cost of a new dedicated machine

Capacity of a new dedicated machine (

Operation cost of an old dedicated machine ( C)

Capacity of an old dedicated machine ( W, )

Demands ( Dy )

Budget (B)

DU(10, 20)
U(4x107°, 6x107%)
U(25x10°, 35x10%)
DU(5, 15)

c”) U(3x107%, 5%x107)

U(2x10°, 3x10°)
U(5x107°, 7x107%)
U(14x10°, 26x10°)
U(15x10°, 25x10°)

100 (constant)
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(Table 2> Results of the computational experiments

Duality Gap (%) !

CPU Time (seconds)

r J T Mean Minimum Maximum Mean Minimum Maximum
2 8 5 2.87 1.95 3.51 143.2 131.0 153.0
12 8 10 236 1.83 2.90 4884 - 459.0 524.0
12 8 15 2.32 145 3.02 933.0 701.0 1058.0
2 12 5 247 1.95 3.20 200.6 176.0 218.0
12 12 10 1.94 1.25 2.58 579.4 540.0 600.0
12 12 15 228 1.38 343 1082.2 990.0 1152.0
12 16 5 3.34 2.38 4.87 21838 171.0 255.0
12 16 10 331 272 41 576.4 476.0 644.0
12 16 15 2.59 1.74 3.60 1350.4 1263.0 1447.0
6 8 5 434 3.20 5.49 248.0 227.0 264.0
16 10 502 343 631 666.8 631.0 688.0
16 15 484 411 5.57 13714 1304.0 1448.0
16 12 5 375 3.28 4385 295.0 275.0 305.0
16 12 10 472 3.14 6.04 790.4 731.0 831.0
16 12 15 432 3.63 5.14 1719.6 1610.0 1845.0
16 16 5 3.84 3.12 455 3304 319.0 346.0
16 16 10 5.04 3.99 6.29 868.8 721.0 971.0
16 16 15 451 3.13 6.59 2059.6 1976.0 2119.0
20 5 3.84 2.20 5.05 316.2 289.0 336.0
20 10 533 428 7.15 814.4 749.0 874.0
20 15 5.09 3.90 6.08 1758.6 1527.0 2014.0
20 125 411 3.65 525 3072 256.0 337.0
20 12 10 521 47 599 1017.2 962.0 1076.0
20 1215 5.85 4.94 7.10 21986 1827.0 24280
20 16 5 4.13 372 4.58 3822 311.0 413.0
20 16 10 479 3.81 6.03 1164.4 1090.0 1199.0
20 16 15 5.12 426 6.00 2688.4 2483.0 2911.0

t I J and T denote the number of operation types, the number of FMM types and the length of

worst case). The average gap increases as the
number of operation types increases, This may
be because it is more difficult to find optimal

acquisition and replacement plans when the

the planning horizon, respectively.

% Duality gap (%) =

Heuristic Solution Value — Best Lower Bound
( Heuristic Solution Valu S er Bound ) % 100

Best Lower Bound

number of operation types is larger. Note that
solution qualities of the heuristic are affected
by acquisition and replacement plans in the

heuristic, since operations assignments are
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determined optimally by solving linear
programs once acquisition and replacement
plans are given. Computation times are
strongly affected by the number of linear
programs solved in Procedure A. As a result,
computation times increase as the problem size

of the linear programs increases.

To see the quality of the solutions in terms
of the deviation from optimal solutions, we
generate 30 test problems, using the same
method as the one used in generating 135 test
problems above, (Optimal solutions could not
be obtained for the 135 problems because of
the computational complexity.) Results are
given in Table 3. The table shows the
average values of the percentage gaps,

percentage errors, and the number of problems

for which the algorithm found optimal
solutions. Here, error represents the percentage
deviation of the heuristic solution value from
the optimal value. The optimal solutions were
obtained using CPLEX 4.0. As shown in the
table, the heuristic algorithm found near-
optimal solutions for the small sized test
problems. The overall average error was 0.32%
with the worst case error of 1.90%. The
heuristic algorithm found optimal solutions of

13 test problems among 30 test problems.

Although it is not shown in the tables, the
subgradient optimization procedure converged
slightly faster with the method suggested in
this study for determining initial multipliers.
When the initialization method was used, the
bounds

initial lower obtained from the

(Table 3) Performance of the heuristic algorithm

Duality  Error

# of optimal

CPU Time (seconds)

I J T Gap %) ()" Sof!;ﬁf; S Heuristic  Optimal
8 6 5 3.61 0.87 1 128.0 1.0
8 ) 8 2.09 0.60 2 355.0 4.0
8 10 10 1.39 0.01 2 4414 7.8
10 6 5 3.01 0.08 2 189.4 58
10 8 8 1.92 0.30 3 374.8 6.8
10 10 10 1.43 0.04 3 678.2 432
Average 2.24 0.32
(Heuristic Solution Value - Optimal Solution Value)

T Eror (%) =

x 100

Optimal Solution Value
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subgradient  optimization procedure  were
approximately 84% of the final lower bounds
on average, while they were zero without the
method. When the initialization method was
not used, 315 iterations, on average, were
necessary to obtain the same bounds as those
obtained from the Initialization method.
Although the final lower bounds obtained with
and without the initialization method were not
much different, the initialization method may
be especially useful in reducing computation
time for branch and bound algorithms that
find lower bounds using the Lagrangian

relaxation approach.

6. Conclusion

In this paper, we considered a problem of
planning manufacturing capacity by retiring
old dedicated machines, and acquiring FMMs
and/or new dedicated machines under budget
restriction over a finite planning horizon. The
problem was formulated as a mixed integer
linear program and solved using a Lagrangian
relaxation approach. In the approach, the
relaxed problem was divided into two
independent  subproblems. Using  several
properties that help to solve the subproblems
easily, we developed a linear programming
based Lagrangian heuristic which uses
information of solutions of relaxed problems to

find good feasible solutions. A subgradient

method with a
adjustment method is employed to obtain

optimization multiplier
better lower bounds, Results of tests on
randomly generated problems showed that the
heuristic gave good solutions in a reasonable
amount of computation time.

The model considered in this research can
be considered as a more practical one than
those suggested previously in other research
since the model considers the budget limitation
and the machine {flexibility by taking into
account multifunctional features of FMMs,
However, it is necessary to consider other
flexibilities such as routing flexibility resulting
from FMMSs for the model to become a more
practical tool for capacity planning. Also, it is
needed to study the impacts of demand
uncertainty or nonlinear cost structures on

capacity planning decisions.

Appendix. A procedure for obtaining a
feasible solution of (P)
First, we define three linear programs, (LPO0),
(LP1) and (LP2), that are used in the
procedure.
(LP0) Min

ZZ’;A;yn + ZZZ?‘,C;;VV,;}% +
P i1
2 rCoW s+ R A, + XY CW, e,
t i 1 ; -

subject to (2), (3), (4), (5), (6), (7), (11),
(12), (13) and

Y20 Vjst ®)

v, 20 Vii (@)
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0<z, <1 Vit (10" V4 s and 2, respectively. If

(LP1) Min

DIRLATED I I N A AN

j ot i j ot

Y G, + Y Y r A, + 3 Y G e,
! Pt it

i

Step 2.

subject to (2), (3), (4), (5), (&), (7). (8),
(9, (10), (11), (12), (13) and

2 Vit X =0 for R={(.0)

UOER T GieR,
P, =0} and R,={(i,0jQ, =0}

(LP2) Min
Z Z Z '}Ci;;myfhijf + Z Z I‘,C,?VV,.,DSH
71 T
+ Z Z '}C:DI'VHN Deiz
subject to (2), (11), (12), (13) and
eit Y va Vl,t (5')

Step 3.
w S 2, Vit (6"

where 3?, vy and z; are given values.

Procedure A (Obtaining a feasible solution)
Step 1. Solve (LP1), and (LP0) if (LP1)

Step 4.

is infeasible, Let ¥, o, and Zzy
be an optimal solution of (LP1) or
(LPO) if (LP1) is infeasible. Let
Y7 vy and 2y be the smallest Step 5.

integers greater than or equal to

_~

Y» Un and z; satisfy (3) and
(7). go to Step 2. Otherwise go to
Step 3.
Solve (LP2). If (LP2) is feasible,
go to Step 5. Otherwise, for m =
0 to T do:
Set z;=1 for all 7 and for
r =0, 1, ., m Solve (LP2)
with new z, values. If
(LP2) is infeasible, increase
m by one and solve (LP2)
again with new m and 2z
values. Go to Step 5 if
(LP2) is feasible,
If (LP2) is infeasible when m =
T, terminate. (A feasible solution
cannot be found with this
procedure.)
Repeat decreasing the value of one
of yss or vzs by one in a
nondecreasing  order of their
priorities, P and @, until (3) is
satisfied. Go to Step 4.

For each 7, let z=1for t = 1,
o t,and zz=0 for t = t+1, .,
T, where ¢ = argmax{¢| 2z;>0}.
Go to Step 2. t

Repeat decreasing the value of one
vzs by one in a

of yus or

nondecreasing  order of  their
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priorities until they cannot be

decreased any longer. Solve (LP2)

with new ¥ and v and update

3’1\,";. vy and the incumbent
solution whenever a better solution

is found.
Step 6, From n = T down to 0 do:

Let zz=0 for all 7 and for
s = n n+l, .., T. Solve
(LP2) with new 2z; values.
If the resulting (LP2) is

feasible, update the solution.

Terminate.
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