• Title/Summary/Keyword: Mixed sand

Search Result 450, Processing Time 0.024 seconds

Scaled Test on the Behavior of the Toe of Drilled Shaft on Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 축소모형시험 연구)

  • Park, Woan-Suh;Choi, Se-Keun;Jeon, Seok-Won;Han, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Despite of the increasing number of the application of drilled shaft piles in construction site, most studies on pile capacity have been focused on the side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use its bearing resistance. The prediction of the end movement and characteristics of the bearing capacity of the pile is great important as well. Therefore, a series of scaled model tests were carried out in order to study the characteristics of the bearing capacity on rock mass. The material of the test block was cement mortar which was mixed with sand, cement and water, and the size of a test block size was $240{\times}240{\times}240mm$. The axial load was applied by a miniaturized pile of 45mm in diameter and flat jacks and steel plate were used for confinement to simulate the real underground loading conditions. The relation of load-displacement was measured in various different conditions of rock mass such as strength, discontinuity of the rock mass and in-situ stress, so q-w curves of the end of the pile were presented for each condition.

  • PDF

A Consideration on the Effect of the Fine Content and Salinity of Soils on the TDR Measurement (토양의 세립분 함량과 염분농도가 TDR 측정값에 미치는 영향 고찰)

  • Yu, Chan;Lee, Geun-Hu
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.246-253
    • /
    • 2006
  • Experimental laboratory tests were carried out to assess the effect of fine content and salinity of soils on the measurement of TDR(Time Domain Reflectometry). In the test, using soil columm which was made by PVC pipe with the dimension of 25cm height and 20cm diameter, the salinity variation of soil was controlled by the solution which was dissolved NaCl to destilled water in the range of 0-40g.$L^-1$. The fine content of soil was controlled by kaolinite which was mixed with Jumunjin sand in the range of 0-50% to the total dry weight. The water contents of soil tested were measured with the conventional oven dry method beside TDR and compared the these values to figure out the extent of effect. As the results of tests, it was appeared that the water content measurement by TDR can be affected by the salinity level, fine contents, and the degree of saturation of the soil.

  • PDF

Cement Prefabricated Piped Making and Its Application on Agriculture Irrigation

  • Meng, Qingchang;Sun, Qingyi;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.212-218
    • /
    • 1996
  • The concrete pipe used to distribute irrigation water to the right place now available is commonly made up of cement , sand, earth, pebble, etc. These materials with right ratio and right amount of water were mixed and squeezed through the pipe-making machine called vertical squeezed pipe-making machine, and then a cement prefabricated pipe is produced . This kinds of pipe has been expanding by leaps and bounds. Being little cement contents and low cost, the length of pipe is 1.0m or so with weight of 50kg, which is easy to be made and to be transported. The demolish pressure of it is 0.2 MPa or so, which meets the needs of agriculture irrigation . The buried pipe irrigation system, has been popularized in Jining Municipal , Shandong Province. By the year of 1995 , the irrigation area under pipe conveyancesystem usign this type of pipe has reached 74000 hectares. By calculation, about 27.7million ㎥ water, 2.88 million kWh power , 0.167 million man power and 1528 hectares cu tivated land will be saved one year, adding value of agriculture output increased by 10 million kg. The total economic benefits amount to 0.92 million US$ a year. The paper presents the pipe making course and its application on a large scale area.

  • PDF

Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production (석유가스생산을 위한 수압파쇄기술 설계 이론과 실제)

  • Cheon, Dae-Sung;Lee, Tae Jong
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.538-546
    • /
    • 2013
  • This paper deals with a hydraulic fracturing technique, which is one of the methods to maximize the recovery rate and productivity of oil and gas in the petroleum industry. In the hydraulic fracturing, typically water mixed with sand and chemicals is injected into a wellbore in order to create artificial fractures along which formation fluids migrate to the well. In recent years, it is widely used in non-conventional oil and gas such as oil shale and shale gas. Three main stages of the hydraulic fracturing process, the proposed design models for the effective hydraulic fracturing and diagnostics after fracturing treatment are introduced. In addition, this paper introduces reservoir geomechanics to solve various problems in the process of hydraulic fracturing.

A Study on Geotechnical Stability of the Sludge Mixed Soil (슬러지가 혼합된 지반의 공학적 안정 특성에 관한 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • The dyeing sludge can be weakened by inflow of rainfall or absorption of moisture after it is buried in a waste landfill. This study tested the dyeing sludge and earth/sand mixture to check the problem when the dehydrated dyeing sludge is buried in a waste landfill. When the dyeing sludge was left idle with high water content inside a landfill with poor draining for a long period, the water permeability decreased to around 3/100 level and the compressibility increased by 1.4 times compared to the dyeing sludge at a dyeing factory. The study result indicated that it was important to reduce the water content inside the landfill for stability. Also, the facilities to secure the drainage path and eliminate leachate were needed.

Utilization of Waste Tires as Soil Reinforcement; (2) Environmental Effects (지반보강재로서 폐타이어의 활용; (2) 환경적 영향)

  • 윤여원;문창만;김건흥
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • Environmental impact of waste tires as gound-reinforcing material is studied. Analysis for chemical compounds and toxic effect were performed on effluents from twelve lysimeters in which waste tires were mixed with sand and three initially different environmental solutions of acidic, neutral, and basic circulated through the mixture. The test results of effluents collected from the lysimeters provided that the contaminant concentrations were lower than those of Korean drinking water standards for all the selected and tested metal elements. While iron concentration increased slightly with the exposure period, other metal concentrations decreased with the number of circulation times. From the comparison with previous investigations, the contaminant concentration decreased with the increase of tire size, i.e. increases with the increase of the exposed surface of tire metals. From the toxicity tests, no deteriorative effect was observed and it could be concluded that waste tires are not biologically hostile materials.

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Treatment of Industrial Wastes by Melting Using H.F. Induction Furnace (고주파 유도로를 이용한 산업 폐기물의 용융처리)

  • 정진기;정헌생;이재천;윤인주;남기대
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • Iron and slag were prepared by melting mixed industrial wastes in an induction furnace. The wastes were steel can, limestone sludge, waste foundry sand, coal fly ash, and glasses. The effects of their mixing ratio on the charactenstics of the meltcd slag were investigated. The wastes were melted to slag under the constant basicity of 1.2. It was found that the major phases of the slag were P-C,S and C,AS and then ratio was determined by the mixing ratio af waste materials. The recovery of iron was about 93-95%. The feasibility of using the slag as the aggregate was confirmed by thc elution and campression tests.

  • PDF

A Study on the Mechanical Properties of Concrete using Garnet Powder with Industrial By-Products (산업부산물인 가네트 미분말을 이용한 콘크리트의 역학적 성상에 관한 연구)

  • 임병호;김태곤;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.123-130
    • /
    • 1999
  • In a preceding study(1), the using method of garnet powder has been studies through the various investigation of basic material properties on garnet powder, industrial by-products generated in Yungju, Kyungpook. In this study, the various properties of concrete mixed with garnet powder are examined as following condition : Unit weight of water (170kg/㎥), water-binder ratio W/B (53, 55 and 58%), sand-aggregate ratio (S/A) (43, 45 and 48%), substitutional ratio of garnet powder of 0, 5, 10, 15 and 20%. Slump increased a little as the substitutional ratio of garnet increased. Air content decreased a little at the substitutional ratio of 10%. or more. Though there is a little difference in compressive strength according to the W/B and the substitutional ratio, compressive strength of concrete using garnet exceeded that of plain concrete a little in the range of the substitutional ration of 5 to 15%. Also, There is a similar tendency in the tensile and flexural strength. Therefore, the use of garnet powder with industrial by-products is expected to improve the workability and the strength of concrete.

Properties of Compressive Strength of Mortar Mixed with WCP for Soil Pavement (폐콘크리트분말 혼합 흙도로 포장용 모르타르의 압축강도 특성)

  • Moon Han Young;Choi Yun Wang;Song Yong Kyu;Moon Dae Joong;Shin Hwa Cheol;Jung Chul Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.537-540
    • /
    • 2004
  • Recently, for industrial development period, concrete structures in domestics have been increased. They were deteriorated by attack of carbonation, freeze-thaw and corrosion etc. In hence they were demolished and reconstructed, resulted in waste concrete particles. In this paper, waste concrete particles (WCP) by product from different crushing and selecting process were used in soil cement-based pavement in the various recycling. For using WCP in soil cement-based pavement, the Qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 Mpa and then optimum mixing ratio of chemical solidification agent were decided in the range of $1.5\~3.0\%$ in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and $20\%$ in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

  • PDF