• Title/Summary/Keyword: Mixed layer

Search Result 1,176, Processing Time 0.027 seconds

Processing Techniques of Layer Channel Image for 3D Image Effects (3D 영상 효과를 위한 레이어 채널 이미지의 처리 기법)

  • Choi, Hak-Hyun;Kim, Jung-Hee;Lee, Myung-Hak
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.272-281
    • /
    • 2008
  • A layer channel, which can express effects on 3D image, is inserted to use it on application rendering effectively. The current method of effect rendering requires individual sources in storage and image processing, because it uses individual and mixed management of images and effects. However, we can save costs and improve results in images processing by processing both image and layer channels together. By changing image format to insert a layer channel in image and adding a hide function to conceal the layer channel and control to make it possible to approach image and layer channels simultaneously during loading image and techniques hiding the layer channel by changing image format with simple techniques, like alpha blending, etc., it is developed to improve reusability and be able to be used in all programs by combining the layer channel and image together, so that images in changed format can be viewed in general image viewers. With the configuration, we can improve processing speed by introducing image and layer channels simultaneously during loading images, and reduce the size of source storage space for layer channel images by inserting a layer channel in 3D images. Also, it allows managing images in 3D image and layer channels simultaneously, enabling effective expressions, and we can expect to use it effectively in multimedia image used in practical applications.

A Characteristic of Freeze and Thaw on Use for Stabilized Soil in Landfill Bottom Liners (매립지 바닥층의 고화토 포설시 동결/융해의 특성)

  • Kim, Heung-Seok;Lee, Song;Lee, Jai-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Recently, Korea brings to remarkable levels about industrialization, modernization, population and development of technology. Especially, the rapidly growing from this technology has increased the burden on existing industrial waste landfills. The purpose of this research is to existing knowledge base of landfill cover liner behavior during periods freeze/thaw. Although these tests have been invaluable in clarifying the problem of freeze/thaw, extending the results of such experimental studies to prototype landfills are questionable. For this investigation, the author utilized a large scale laboratory simulation allowing inclusion of the field depth of the cover systems, layered soil profiles, rainfall simulation, a cold climate and boundary conditions similar to those encountered in the landfill. And the soil materials used stabilized soils (mixed clays, cements, and minerals) instead of clays. The bottom liners are made up of drainage layer (30cm), stabilized layer (75cm), and leach collection layer (60cm). The stabilized layers are made up of supporting layer (45cm) and impermeable layer (30cm) - consisted of $P_A$ and $P_B$ layer.

  • PDF

The Study on Magnetioresistance in Fe[NiFe/Cu] Multilayers (Fe[NiFe/Cu] 다층박막의 자기저항 효과에 대한 연구)

  • 박병숙;백주열;이기암;현준원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.258-262
    • /
    • 1996
  • We have investigated the changes in magnetoresistive characteristics, interfacial roughness, and preferred orientation with the Fe buffer layer thickness, annealing temperature, and the stacking number of layers variation in Fe/[NiFe/Cu] multilayers by using the 3-gun d.c. magnetron sputtering method. Intensity of the (200) orientation was increased with the increment of the Fe-buffer layer thickness. We found a maximum magnetoresistance ration of 4.7%, when the buffer layer thickness was 70$\AA$, and the field sensitivity also showed a maximum value at the same thickness. We varied the stacking number of multilayers with fixing the Fe buffer layer thickness of 70$\AA$. When the stacking number was 40 layers, maximum MR ratio(5.3%) was observed. With the variation of annealing temperature no change in the MR ratio was found beyond $300^{\circ}C$. But decrement of MR ratio was observed above $300^{\circ}C$. This decrement of the MR ratio was responsible for the increment of paramagnetic mixed layer caused by the diffusion of Cu layer and the change of antiferromagnetic coupling.

  • PDF

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.

Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3509-3513
    • /
    • 2014
  • Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fatty-acid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph-thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

Growth of AlN Thin Film on Sapphire Substrates and ZnO Templates by RF-magnetron Sputtering (RF 마그네트론 스퍼터링법을 이용하여 사파이어 기판과 ZnO 박막 위에 증착한 AlN 박막의 특성분석)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • AlN thin films were deposited on sapphire substrates and ZnO templates by rf-magnetron sputtering. Powder-sintered AlN target was adopted for source material. Thickness of AlN layer was linearly dependent on plasma power from 50 to 110 W, and it decreased slightly when working pressure increased from 3 to 10 mTorr due to short mean free path of source material sputtered from AlN target by Ar working gas. When $N_2$ gas was mixed with Ar, the thickness of AlN layer decreased significantly because of low sputter yield of nitrogen. AlN layer was also deposited on ZnO template. However, it showed weak thermal stability that the interface between AlN and ZnO was deteriorated by rapid thermal annealing treatment above $700^{\circ}C$. In addition, ZnO layer was largely attacked by MOCVD ambient gas of hydrogen and ammonia around $700^{\circ}C$ through inferior AlN layer deposited by sputtering. And AlN layers were fully peeled off above $900^{\circ}C$.

Interleaving Phenomena of the North Pacific Intermediate Water in the Offshore Area of the Kuroshio

  • Yang, Sung-Kee;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.521-527
    • /
    • 2003
  • To study the intruded phenomena of North Pacific Ocean around Boso peninsular, water property distribution in the adjacent seas to Japan is studied using the hydrographic data obtained by Japan Maritime Agency and Japan Fisheries Agency from 1973 to 1996, The scattering of water type in T-5 diagram is relatively small in the Kuroshio Region. Both the envelopes of saline side and of fresh side of the scattered data points shifts gradually from saline side to fresh side as the observation Line moves from southwest to northeast. In mixed water region, the scattering of water type increases rapidly as the observation line moves north; the envelope of fresh cold side moves towards fresh cold side much faster than that of saline side. This suggests that the water does not advect along the salinity minimum layer, but the salinity minimum layer can be understood as a boundary of two different waters aligned vertically, We defined the typical water masses as the Oyashio Water and the Kuroshio Water. The water mass below the salinity minimum layer may be created by isopycnal mixing of these two water masses with a fixed mixing rate. While the water mass above the salinity minimum cannot be created simply by isopycnal mixing. The salinity minimum layer may be eroded from upper side due to active minxing processes in the surface layer, while the water of the salinity minimum layer moves gradually southward. This appears to give an explanation why the thermosteric anomaly value at salinity minimun decereases towards south.

Stress Intensity Factors for a Center Cracked laminated Composites under Shear Loading (전단하중을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 오재협;김성호;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.838-848
    • /
    • 1992
  • The objective of the study is to provide a theoretical tools for analyzing the fracture of leyered composites with a center crack. It is assumed that the composite is composed of successive accumulation of the fiber layer and resin layer with the fiber layer being perfectly bonded to the resin layer except the region of a center crack. In-plane shear loading (Mode II) and the anti-plane shear loading (Mode III) are considered separately. Boundary value problems are formulated by using a plane theory of elasticity and governing equations are reduced to a Fredholm integral equation of a second kind. The equation is solved numerically and the stress intensity factors are obtained. The normalized Mode II and Mode III stress intensity factors are evaluated for various combinations of material properties and for various geometrical parametes.

Changes of Seasonal and Vertical Water Quality in Soyang and Paldang River-reservoir System, Korea (소양호와 팔당호 수질의 수직 및 계절적 변화)

  • Kim, Jong-Min;Park, Jun-Dae;Noh, Hye-Ran;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.10-20
    • /
    • 2002
  • Changes of seasonal and vertical water quality was analyzed with physico-chemical data from Soyang and Paldang river-reservoir system in Korea during the 1996 to 1998. In Soyang river-reservoir system, the water column was well stratified, which narrow epilimnion layer of 5 to 10 m depth in spring to summer enlarged gradually about 40 m depth in fall as going to times. In contrast, metalimnion layer tended to be narrow during the same period. Water temperature of hypolimnion was maintained about $5^{\circ}C$ continuously throughout the year. DO of the epilimnion layer was supersaturated from spring to summer, however, it was decreased to 75% at the epilimnion layer and $45{\sim}50%$ at the hypolimnion layer at the late fall. The lowest conductivity of below $50\;{\mu}S/cm$ was observed at the metalimnion layer during thesummer to fall. In Paldang river-reservoir system, the water column wag well mixed layer throughout the year, although water temperature was changed seasonally from $5^{\circ}C$ in February to $28^{\circ}C$ in July. Water temperature between upper and lower layer was different about $5^{\circ}C$ from late spring (May) to early fall (September). DO was over and less saturated in upper and lower layer during the early summer to early fall, respectively. Conductivity was decreased to $90\;{\mu}S/cm$ in lower layer of below $4{\sim}5\;m$ depth during the late spring to early fall and that of upper layer of above 10 m depth decreased to about $100\;{\mu}S/cm$ during the late fall (November) and early spring (March). Retention time of Soyang river-reservoir system was much longer than that of Paldang river-reservoir system. Chlorophyll a, T-N and T-P concentration in Paldang river-reservoir system were higher than that of Soyang river-reservoir system by a factor of 2.7, 1.2 and 2.6, respectively. Algal blooming was deeply affected by the nutrients than the retention time.

Study on Manufacturing Techniques of Bracket Mural Paintings of Daeungbojeon Hall in Naesosa Temple (내소사 대웅보전 포벽화 제작기법 연구)

  • Lee, Hwa Soo;Lee, Na Ra;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.557-568
    • /
    • 2018
  • The manufacturing techniques were studied by investigating a precise analysis on wall structure, features of materials and the painting layer of the bracket mural paintings at Daeungbojeon Hall in Naesosa temple. The wall frame is a single-branch structure, and The mural paintings are composed of 3 layers which are a support layer, a finishing layer and a painting layer. The support layer and the finishing layer are an earth wall that sand and clay such as Quartz, Feldspar, and etc. are mixed. The support and the finishing layers have a combination of medium particle sand and smaller than fine particle sand in the approximate ratios of 0.8:9.2 and 6:4, respectively. Therefore, the aforementioned ratio of sand with medium or large particles is relatively higher in the finishing layer than the support layer. As a result of a precise analysis on the painting layer, it has a relatively thick ground layer for painting which is maximum $456.15{\mu}m$ by using Celadonite or Glauconite and the paintings were colored by using pigments such as Atacamite, Kaolinite or Halloysite, Oxidized steel, and etc. on it. The manufacturing style and the painting techniques of an earth wall are included in the category of the Joseon Dynasty style that have been studied up to now, but the facts that the finishing layer has a high content of sand and a middle layer and chopped straw have not been identified. These are remarkable points in terms of structure and materials, and can be crucial in the evaluation of the state of conservation of mural paintings or preparation of a conservation plan.