DOI QR코드

DOI QR Code

Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • Received : 2014.07.21
  • Accepted : 2014.08.14
  • Published : 2014.12.20

Abstract

Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fatty-acid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph-thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

Keywords

References

  1. McDemott, M.; Wakelam, M. J.; Morris, A. J. Biochem. Cell Biol. 2004, 82, 225. https://doi.org/10.1139/o03-079
  2. Exton, J. H. Rev. Physiol. Biochem. Pharmacol. 2002, 144, 1. https://doi.org/10.1007/BFb0116585
  3. Huang, P.; Frohman, M. A. Exp. Opin. Ther. Targets 2007, 11, 707. https://doi.org/10.1517/14728222.11.5.707
  4. Tappia, P. S.; Dent, M. R.; Dhalla, N. S. Free Radical Biol. Med. 2006, 41, 349. https://doi.org/10.1016/j.freeradbiomed.2006.03.025
  5. Scott, S. A.; Selvy, P. E.; Buck, J. R.; Cho, H. P.; Criswell, T. L.; Thomas, A. L.; Armstrong, M. D.; Arteaga, C. L.; Lindsley, C. W.; Brown, H. A. Nat. Chem. Biol. 2009, 5, 108. https://doi.org/10.1038/nchembio.140
  6. Brown, H. A.; Henage, L. G.; Preininger, A. M.; Xiang, Y.; Exton, J. H. Lipidomics and Bioactive Lipids: Lipids and Cell Signaling; Brown, H. A., Ed.; Academic Press: Amsterdam, Netherlands, 2007; pp 58-100.
  7. Ingolia, T. D.; Koshland, D. E., Jr. J. Biol. Chem. 1978, 253, 3821.
  8. Wilschut, J.; Papahadjopoulos, D. Nature 1979, 281, 690. https://doi.org/10.1038/281690a0
  9. Hoekstra, D.; Yaron, A.; Carmel, A.; Scherphof, G. FEBS Lett. 1979, 106, 176. https://doi.org/10.1016/0014-5793(79)80722-X
  10. Keller, P. M.; Person, S.; Snipes, W. J. Cell Sci. 1977, 28, 167.
  11. Gibson, G. A.; Loew, L. M. Biochem. Biophys. Res. Commun. 1979, 88, 135. https://doi.org/10.1016/0006-291X(79)91707-8
  12. Owen, C. S. J. Membr. Biol. 1980, 54, 13. https://doi.org/10.1007/BF01875372
  13. Vanderwerf, P.; Ullman, E. F. Biochim. Biophys. Acta 1980, 596, 302. https://doi.org/10.1016/0005-2736(80)90363-6
  14. Uster, P. S.; Deamer, D. W. Arch. Biochem. Biophys. 1981, 209, 385. https://doi.org/10.1016/0003-9861(81)90296-4
  15. Struck, D. K.; Hoekstra, D.; Pagano, R. E. Biochemistry 1981, 14, 4093.
  16. Ellens, H.; Bentz, J.; Szoka, F. C. Biochemistry 1984, 27, 1532.
  17. Bentz, J.; Duzgunes, N.; Nir, S. Biochemistry 1985, 24, 1064. https://doi.org/10.1021/bi00325a039
  18. Park, J.-W. J. Membr. Biol. 2011, 244, 55. https://doi.org/10.1007/s00232-011-9397-z
  19. Park, J.-W. Colloids Surf. B: Biointerf. 2012, 97, 207. https://doi.org/10.1016/j.colsurfb.2012.04.034
  20. Park, J.-W. J. Membr. Biol. 2013, 246, 399. https://doi.org/10.1007/s00232-013-9551-x
  21. Lee, G. S.; Park, J.-W. Bull. Korean Chem. Soc. 2013, 34, 3223. https://doi.org/10.5012/bkcs.2013.34.11.3223
  22. New, R. R. C. Liposomes: A Practical Approach; Academic Press: New York, 1990; pp 20-45.
  23. Lide, D. R. CRC Handbook of Chemistry and Physics: A Readyreference Book of Chemical and Physical Data, 85th ed.; CRC Press: Boca Raton, 2005; pp 220-246.
  24. Webb, L. M.; Arnholt, A. T.; Venable, M. E. Mol. Cell Biochem. 2009, 337, 153.
  25. Cheow, W. S.; Chang, M. W.; Hadinoto, K. J. Biomed. Nanotechnol. 2010, 6, 391. https://doi.org/10.1166/jbn.2010.1116
  26. Furt, F.; Moreau, P. Int. J. Biochem. & Cell Biol. 2009, 41, 1828. https://doi.org/10.1016/j.biocel.2009.02.005
  27. Park, J.-W.; Ahn, D. J. Colloids Surf. B: Biointerf. 2008, 62, 157. https://doi.org/10.1016/j.colsurfb.2007.09.020

Cited by

  1. Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes vol.32, pp.2, 2014, https://doi.org/10.7841/ksbbj.2017.32.2.103