• Title/Summary/Keyword: Mixed ionic and electronic conductor

Search Result 13, Processing Time 0.021 seconds

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells (혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가)

  • HYEONGSIK SHIN;JINWOO LEE;SIHYUK CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Study on Composite Cathode for YSZ Electrolyte in SOFC (SOFC의 YSZ 전해질에 대한 혼합공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.62-67
    • /
    • 2007
  • Optimization of cathode properties for intermediate temperature-operating SOFC (IT-SOFC) is carried out by using composite-type electrode structure in this study. Composite cathode may lower cathode overpotential by enhancing mixed ionic-electronic conductivity. In this study, particularly, LSM/YSZ, LSF/YSZ, LSCF/CGO, and PSC/CGO were selected as cathode materials. LSM/YSZ composite cathode showed the best performance of about 0.9${\Omega}cm^2$ at $700^{\circ}C$. It is inferred that the resistance is mainly affected by the reactivity between cathode and electrolyte which can cause the formation of resistive phases. Area specific resistance (ASR) characteristics were not changed significantly with decreasing sintering temperature of cathode, because reaction sites were increased even with worse adhesion of cathode on electrolytes.

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J.;Lee, D.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.

High temperature electrical properties of Sr-and Mg-Doped LaAlO3 (억셉터(Sr, Mg)가 첨가된 LaAlO3의 고온 전도 특성)

  • Park, Ji Young;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2019
  • Perovskite-type oxides have consistently attracted considerable attention for their applications in high-temperature electrochemical devices, such as electrolytes and electrodes of solid oxide fuel cells, oxygen permeating membranes and sensors etc. Among them, the electrical conductivity of 10 % Sr and 10 % Mg doped $LaAlO_3$ (LSAM9191) was measured using impedance spectroscopy and 4-probe d.c. method. Below $550^{\circ}C$, the grain boundary resistance mostly determined the overall conductivity; however, it nearly disappeared above $800^{\circ}C$. Using the defect model and curve fitting, the ionic and electronic conductivity contributions were also separated. In the temperature region where the sample resistance is mostly determined by the grain volume property, LSAM9191 was an oxygen ion conductor at low $Po_2$ and a mixed conductor at high $Po_2$. With increasing temperature, the ionic conduction region only slightly increased. Thus, LSAM9191 is a promising material as an oxygen ion conductor at high temperature and in low $Po_2$.

Partial Conductivity of YSZ Doped with 10 mol% $TiO_2$

  • Kobayashi, Kiyoshi;Kai, Yukiharu;Yamaguchi, Shu;Kawashima, Tsuyoshi;Iguchi, Yoshiaki
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.114-121
    • /
    • 1998
  • Using Hebb-Wagner's asymmetric cell, partial conductivities of holes and electrons in yttria stabilized zirconia doped with 10 mol% TiO2 have been estimated by a dc polarization measurement. The current interrruption method and ac impedance measurements have been also made to evaluate the ionic conductivity and to examine the consistency of the partial conductivities. Partial conductivities of electrons(σn) and holes (σp) were found to be pro-peortional to -1/4 and 1/4 power of partial pressure of oxygen gas, respectively, except for σn at reducing conditions. In comparison with 5 mol% doped YSZ, σn was found to increase with the increase of TiO2 concentration, but σp stayed at almost a constant value.

  • PDF

Studies of Co-Fe based perovskite cathodes with fixed A-site cations (중 저온형 고체 산화물 연료전지를 Co-Mn 계열의 페로브스카이트 구조의 공기극에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.364-367
    • /
    • 2006
  • The decrease of polarization resistance in cathode is the key point for intermediate temperature SOFC(Solid Oxide Fuel Cell). In this study, the Influence of Co substitution in B-site at perovskite PSCM (Pr0.3Sr0.7CoxMn(1-x)) was investigated. The PSCM series exhibits excellent MIEC(Mixed ionic Electronic Conductor) properties. The ASR(Area Specific Resistance) of PSCM3773 was $0.174{\Omega}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials.

  • PDF

Study of Pr0.3Sr0.7CoxMn(1-x)O3 as the Cathode Materials for Intermediate Temperature SOFC (중.저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 Pr0.3Sr0.7CoxMn(1-x)O3 (x=0, 0.3, 0.5, 0.7, 1)에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.214-218
    • /
    • 2007
  • The decrease of polarization resistance in cathode is the key point for operating at intermediate temperature SOFC (solid oxide fuel cell). In this study, the influence of Co substitution in B-site at complex perovskite on the electronic conductivity of PSCM ($Pr_{0.3}Sr_{0.7}Co_xMn_{(1-x)}$) was investigated. The PSCM series exhibits excellent MIEC (mixed ionic electronic conductor) properties. The ASR (area specific resistance) of PSCM3773 was $0.174{\Omega}{\cdot}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The TEC(thermal expansion coefficient) was decreased by addition of Mn. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials. The delamination was caused by the difference of TEC.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Study of $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) as the cathode materials for intermediate temperature SOFC (${\cdot}$저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) 에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.125-128
    • /
    • 2007
  • The influence of Co substitution in B-site at perovskite PSCF($Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3}$) was investigated in this study. The PSCF series exhibits excellent MIEC(mixed ionic electronic conductor) properties. ASR(area specific resistance) of PSCF3737 was 0.137 ${\Omega}{\cdot}cm^{2}$ at $700^{\circ}C$. The activation energy of PSCF3737 was also lower than other compositions of PSCF. ASR of PSCF3737 was analysed as two parts at different part of frequency region. Responses at middle frequency part (${\sim}10^2$ Hz) were concerned with oxygen reduction reaction and those at low frequency part (${\sim}10^{-1}$ Hz) were related with oxygen diffusion.

  • PDF

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.