• 제목/요약/키워드: Mixed Convection Heat Transfer

검색결과 75건 처리시간 0.021초

일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달 (Heat transfer of Mixed convection in rectangular space with constant heat flux)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF

양 끝이 개방된 경사진 채널 내에서의 혼합대류에 관한 수치적 연구 (A Numerical Study on the Mixed Convection in Open-Ended Inclined Channels)

  • 박일용;배대석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.78-85
    • /
    • 2005
  • A numerical calculation is performed to study the effects of buoyancy force on the heat transfer characteristics of laminar forced convection flow in inclined parallel plates with the upper part cooled and the lower Part heated uniformly. Numerical results are presented for the Reynolds number ranges from $4.0\times10^{-3}$ to $1.13\times10^{-1}$. the angle of inclination, $\theta$. from 0 to 90 degree and Pr of the high viscosity fluid is 909. It is found that the flow pattern of mixed convection in inclined parallel Plates can be classified into four patterns which affected by Reynolds number and the angle of inclination.

농도 성층화된 유체의 아랫면 가열에 의한 이중확산대류에 관한 연구 (Double-Diffusive Convection in a Salt-Stratified Fluid Heated From Below)

  • 강신형;김무현;이진호
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3297-3304
    • /
    • 1994
  • Experimental investigation have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution heated from below in a cylindrical cavity. The objective is to examine the process of mixed-layer formation, the flow phenomena, the heat transfer characteristics, and temperature and concentration distribution according to the changes in the effective Rayleigh number based on the reference height which represents the relation of temperature and concentration gradient. The types of initially formed flow pattern are categorized in three regimes depending on the effective Rayleigh number ; stagnant flow regime, single mixed-layer flow regime and successively formed multiple mixed-layer flow regime. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered flow regime, but both linear in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly. The layers expand by diffusion of concentration through the interface along with its random fluctuation.

조건이 다른 수직 평형 평판에서 혼합대류 열전달 (Mixed Convection Heat Transfer from Two Vertical Parallel Plates with Different Conditions)

  • 김상영;정한식;권순석
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.243-252
    • /
    • 1992
  • A mixed convection heat transfer from two vertical parallel plates has been studied numerically by the finite difference method. Effects of the Grashof number, the relative length, $L_2/L_1$. the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ and the dimensionless plate spacing, $b/L_1$ are examined for the heat transfer. Independent of the Grashof numbers and $L_2/L_1$, the dimensionless vertical velocity distributions skewed on the left plate as ${\Phi}_2/{\Phi}_1$ decreased. The dimensionless vertical velocity distribution for $Gr/Re^2=1$ and ${\Phi}_2/{\Phi}_1=1.0$ is skewed to the right plate $L_2/L_1=0.5$, symmetric at $L_2/L_1=1.0$ and skewed to the left plate at $L_2/L_1=1.5$. But for $Gr/Re_2=10.0$ and ${\Phi}_2/{\Phi}_1=1.0$ reversed velocity patterns are obtained. Regardless of the Grashof numbers and $L_2/L_1$, the mean Nusselt nembers on the inside surface of the left plate decreases and those of the right inside surface increases as ${\Phi}_2/{\Phi}_1$ increases. Temperature, velocity and mean Nusselt number distributions are apparently not affected by $L_2/L_1$.

  • PDF

PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구 (A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm)

  • 최영기;정진영
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

수직관내 발달 유동의 층류혼합대류 연구 (Study on Laminar Mixed Convection of Developing Flow in Vertical Pipe)

  • 고봉진;정범진
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.481-489
    • /
    • 2010
  • 수직관내 발달 유동의 층류혼합대류에 관한 본 연구는 Re 1,000에서 3,000, $Gr_H\;10^5$에서 $10^8$, Pr 2,000 에서 7,000 그리고 종횡비 1부터 7에 대한 범위에 대해서 수행되었다. 유사성(Analogy)의 원리를 이용하여 수직관내 발달 유동의 층류혼합대류 열전달계를 물질전달계로 모사하였다. 물질전달계로써 Nu 수는 기존의 문헌들의 그것들보다 상당히 큰 값이었는데, 이는 본 실험의 높은 Pr 수 때문이다. 본 연구에서의 종횡비는 완전발달 할 만큼 크지 않았기 때문에, 실험 결과는 긴 수직관내 혼합대류 유동보단 평행평판에서의 혼합대류 유동과 유사하였다. 본 연구의 결론으로서 낮은 종횡비와 $Gr_H$ 수를 갖는 수직관내 발달 유동의 층류혼합대류 유동은 수직 평판에서의 층류혼합대류 유동과 유사한 거동을 보인다는 것이다. 그리고 종횡비와 $Gr_H$ 수가 증가할 때 유체의 거동은 수직관내 완전발달 유동과 유사한 현상을 보였다.

동심환형 곡관의 혼합대류 열전달 현상에 관한 수치적 연구 (A Numerical Study on Mixed Convection Heat Transfer in Concentric Curved Annuli)

  • 최훈기;유근종
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.283-290
    • /
    • 2002
  • 동심환형 곡관의 내벽면에서 일정한 열전달이 있는 경우에 대하여 혼합대류의 유동장 및 열전달계수를 수치적으로 구하였다. 유동장은 주흐름방향으로의 압력과 온도구배가 일정한 완전발달흐름으로 가정하였다. 유동장의 특성을 나타내는 물리적 변수인 반경비는 0.2, 0.5, Grashof수는 8000, 80000 그리고 Dean수는 0-900범위에서 계산을 실시하였다. 반경비, Grashof수, Dean수를 변화시키며 2차유동, 열유속, 마찰비, 열전달계수에 대한 수치해를 구하였다. 마찰비와 Nusselt수는 Dear수의 제곱근에 비례하게 증가됨을 볼 수 있다.

수직으로 엇갈린 등온평판에서의 혼합대류 열전도 (Mixed Convection Heat Transfer from Vertically Misaligned Isothermal plates)

  • 권순석;김상영;박순업
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.52-61
    • /
    • 1992
  • The steady laminar mixed convection from vertically misaligned, isothermal plastes has been studied by numerical procedure. The governing equations are solved by the finite difference method using successive using successive over relaxation scheme at Re=100-800, $Gr=10^3-10^6$, Pr=0.71 and dimensionless plate spacings b/L=0.1-1.0. The plume interaction caused by the thermal interference of twoplates is observed. As Reynolds numbers increase, the optimum plate spacings are moved to narrow spacings at the same Grashof number and as Grashof numbers increase, to wide spacings at the same Reynolds number.

  • PDF

난류 혼합 대류유동에서 고 흡수, 방사하는 입자의 열 확산에 관한 연구 (Study on Thermophoresis of Highly Absorbing, Emitting Particles in Turbulent Mixed Convection Flows)

  • 여석준
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.231-241
    • /
    • 1996
  • The effect of radiation and buoyancy on the thermophoresis phenomenon owing to the presence of highly absorbing, emitting particles (such as soot or pulverized coal) suspended in a two phase flow system was investigated numerically for a turbulent mixed convection flow. The analysis of conservation equations for a gas-particle flow system was performed on the basis of a two-fluid model from a continuum Eulerian viewpoint. The modified van Driest and Cebeci mixing length turbulence model was adopted in the anaylsis of turbulent flow. In addition, the P-1 approximation was used to evaluate the radiation heat transfer. As expected from the particle concentration and drift velocity distribution, the cumulative collection efficiency E (x) becomes larger when the buoyancy effect increases (i.e. higher Grashof number), while smaller as the radiation effect increases (i.e. higher optical thickness).

  • PDF

플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석 (Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel)

  • 최인수;박병덕;서주환
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF