• Title/Summary/Keyword: Mittag-Leffler system

Search Result 5, Processing Time 0.02 seconds

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

CONTROLLABILITY OF GENERALIZED FRACTIONAL DYNAMICAL SYSTEMS

  • K. Balachandran
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1115-1125
    • /
    • 2023
  • This paper deals with the controllability of linear and nonlinear generalized fractional dynamical systems in finite dimensional spaces. The results are obtained by using fractional calculus, Mittag-Leffler function and Schauder's fixed point theorem. Observability of linear system is also discussed. Examples are given to illustrate the theory.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.