• 제목/요약/키워드: Mitogen-activated protein kinase kinase

검색결과 793건 처리시간 0.034초

핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화 (Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus)

  • 김윤석;김소영;김태우
    • 대한의생명과학회지
    • /
    • 제2권2호
    • /
    • pp.175-185
    • /
    • 1996
  • 모든 진핵세포에 존재하며 세포의 성장 및 분화에 주로 관계되는 신호전달물질의 하나인 Mitogen-activated protein(MAP)kinase의 mitogen에 의한 핵내 활성화와 기질 인산화에 대해 알아보기 위해 본 실험을 수행하였다. P388세포를 10% fetal bovine serum이 첨가된 DMEM배지에 배양한 후, 혈청이 들어있지 않은 배지에서 24시간 더 배양하고 serum 및 PMA를 농도별로 처리하여 세포성 장을 위한 최적 농도를 확인한 결과 serum은 5-20% 농도에서 세포성장을 촉진시켰고 PMA는 실험한 모든 농도에서 세포성장을 거의 촉진시키지 못하는 경향을 확인하였다. 이어 P388 세포를 serum 및 PMA로 10 분간 활성화하여 파쇄한후 세포질분획과 핵분획으로 분리하여 각 분획을 10% gel 상에서 전기영동 하여 nitrocellulose paper에 옳긴 후 anti-ERKI antibody를 이용해 확인해본 결과 serum, PMA로 처리된 세포 모두에서 MAP kinase의 핵내 이동이 관찰되었으며 특히 세포질 내에 주로 존재하는 42, 44 Kd의 MAP kinase isoform중 42 Kd의 isoform이 주로 핵내로 이동되는 것이 관찰되었다. MAP kinase의 기질인산화 실험을 위해 serum으로 활성화시킨 세포를 파쇄하여 SP-sephadex C-50, Phenyl superose, Mono Q column의 순서로 chromatography를 시 행하여 MAP kinase를 부분분리 하였다. 이와 같이 얻은 MAP kinase를 가지고 면역 T세포에 존재하는 tyrosine kinase인 $p56^{lck}$ 의 N-terminal peptide로 구성된 GST-fusion protein에 대한 인산화를 확인하였다. 또한 세포에서 분리한 MAP kinase를 가지고 transcription factor의 하나인 c-Jun protein에 대한 인산화실험을 실시한 결과 MAP kinase에 의해 인산화 됨이 확인되었다. 이상의 결과를 통해 P388세포는 (1)세포 성장시 외부 신호를 G-protein-coupled receptor/protein kinase C/MAP kinase의 경로보다는 주로 tyrosine kinase receptor protein/Ras/MAP kinase의 경로를 이용하여 핵으로 전달하는 것으로 추측되 며 (2) mitogen의 처리로 활성화된 MAP kinase중 주로 42 Kd isoform이 핵내로 이동하고, 분리한 MAP kinase가 GST-fusion protein과 transcription factor인 c-Jun을 모두 인산화 시키는 결과로 보아 MAP kinase의 isoform에 따라 표적 compartment가 다르고 결과적으로 표적 기질에 차이가 있을지 모른다고 간접적으로 추론할 수 있다.

  • PDF

급성 폐손상에서 호중구 활성화의 분자학적 기전 (Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury)

  • 염호기
    • Tuberculosis and Respiratory Diseases
    • /
    • 제53권6호
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways

  • Qin, Na;Yang, Wei;Feng, Dongxu;Wang, Xinwen;Qi, Muyao;Du, Tianxin;Sun, Hongzhi;Wu, Shufang
    • Journal of Ginseng Research
    • /
    • 제40권3호
    • /
    • pp.285-291
    • /
    • 2016
  • Background: Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods: MCT-intoxicated rats were treated with gradient doses of TG, with or without $N^G$-nitro-$\small{L}$-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results: TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion: TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • 제15권1호
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

동물 조직세포로부터 Mitogen-activated Protein (MAP) Kinase의 분리 및 성격규명 (Purification and Characterization of Mitogen -Activated Protein (MAP) Kinase from Mammalian Tissue Cells)

  • 김태우;정동주;김윤석
    • 대한의생명과학회지
    • /
    • 제2권1호
    • /
    • pp.21-30
    • /
    • 1996
  • Mitogen-activated protein (MAP) kinase는 여러 세포증식 촉진인자들에 의하여 자신이 인산화됨으로써 활성화되어 다른 protein kinase를 인산화시키는 역할을 하는 세포내 신호전달의 중요한 효소이다. 본 연구에서는 P388 murine leukemia 세포 파쇄액에서 SP sephadex C-50, phenyl superose, Mono Q column을 통하여 MAP kinase를 분리한 결과, 44 kD와 66kD의 isoform을 확인할 수 있었다. 면역 T 세포의 $p56^{kk}$의 N-terminal로부터 유전자 재조합 방법을 통하여 glutathion-s-transferase(GST) fusion protein을 얻은 후 분리한 MAP kinase의 기질로 사용하여 본 결과, wild type과 mutant간에 인산화 정도의 차이를 확인할 수 있어 MAP kinase의 또 다른 기질로 이용할 수 있는 가능성을 제시하였다.

  • PDF

Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition

  • Lee, Horim
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.651-656
    • /
    • 2015
  • Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition.

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

p38 mitogen-activated protein kinase-dependent activation of contractility in rat thoracic aorta

  • Yeol, An-Hui
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.24-24
    • /
    • 2001
  • The present study was undertaken to determine whether p38 mitogen-activated protein kinase participates in the regulation of vascular smooth muscle contraction by endothelin-I (ET-1) in rat thoracic aorta. ET-1 induced a sustained contraction. In contrast, both the intracellular Ca$\^$2+/ and myosin light chain (MLC) phosphorylations were not sustained.(omitted)

  • PDF

Mitogen-activated Protein Kinases in the Development of Normal and Diseased Kidneys

  • Awazu, Midori
    • Childhood Kidney Diseases
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Mitogen-activated protein kinases (MAPKs) play important roles in various cellular functions including proliferation, differentiation, and apoptosis. We showed that MAPKs are developmentally regulated in the rat kidney. p38 MAPK (p38) and extracellular signal-regulated kinase (ERK) were strongly expressed in the fetal kidney, whereas c-Jun N-terminal kinase (JNK) was detected predominantly in the adult kidney. The inhibition of p38 or ERK in organ culture resulted in reduced nephron formation with or without reduced kidney size. On the other hand, persistent fetal expression pattern of MAPKs, i.e., upregulation of p38 and ERK and downregulation of JNK, was observed in the cyst epithelium of human renal dysplasia, ovine fetal obstructive uropathy, and pcy mice, a model of polycystic kidney disease. Furthermore, activated p38 and ERK induced by cyclic stretch mediated proliferation and $TGF-{\beta}1$ expression in ureteric bud cells, probably leading to cyst formation and dysplastic changes. Inhibition of ERK slowed the disease progression in pcy mice. Finally, ERK and p38 were inactivated in the early embryonic kidney subjected to maternal nutrient restriction, characterized by reduced ureteric branching and nephron number. Thus, MAPKs mediate the development of normal and diseased kidney. Their modulation may result in novel therapeutic strategies against developmental abnormalities of the kidney.

Immunostimulatory Effect of Ovomucin Hydrolysates by Pancreatin in RAW 264.7 Macrophages via Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway

  • Jin-Hong Jang;Ji-Eun Lee;Kee-Tae Kim;Dong Uk Ahn;Hyun-Dong Paik
    • 한국축산식품학회지
    • /
    • 제44권4호
    • /
    • pp.885-898
    • /
    • 2024
  • Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.