References
- Alabadi, D., Gil, J., Blazquez, M.A., and Garcia-Martinez, J.L. (2004). Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 134, 1050-1057. https://doi.org/10.1104/pp.103.035451
- Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. https://doi.org/10.1038/415977a
- Bu, Q., Zhu, L., Dennis, M.D., Yu, L., Lu, S.X., Person, M.D., Tobin, E.M., Browning, K.S., and Huq, E. (2011). Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J. Biol. Chem. 286, 12066-12074. https://doi.org/10.1074/jbc.M110.186882
- Carvalho, S.D., and Folta, K.M. (2014). Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Hort. Res. 1, 8. https://doi.org/10.1038/hortres.2014.8
- Chen, M., and Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 21, 664-671. https://doi.org/10.1016/j.tcb.2011.07.002
- Dai, Y., Wang, H., Li, B., Huang, J., Liu, J., Liu, X., Zhou, Y., Mou, Z., and Li, J. (2006). Increased expression of MAPK kinase kinase7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18, 308-320. https://doi.org/10.1105/tpc.105.037846
- de Lucas, M., Jean-Michel, D., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. https://doi.org/10.1038/nature06520
- Doczi, R., Brader, G., Pettko-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, M., and Hirt, H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19, 3266-3279. https://doi.org/10.1105/tpc.106.050039
- Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., et al. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479. https://doi.org/10.1038/nature06448
- Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., and Zhang, Y. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18, 1190-1198. https://doi.org/10.1038/cr.2008.300
- Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., et al. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192-198. https://doi.org/10.1016/j.tplants.2006.02.007
- Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., Wilson, C., et al. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308. https://doi.org/10.1016/S1360-1385(02)02302-6
- Jang, I.C., Yang, J.Y., Seo, H.S., and Chua, N.H. (2005). HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev. 19, 593-602. https://doi.org/10.1101/gad.1247205
- Lampard, G.R., Lukowitz, W., Ellis, B.E., and Bergmann, D.C. (2009). Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. Plant Cell 21, 3506-3517. https://doi.org/10.1105/tpc.109.070110
- Lampard, G.R., Wengier, D.L., and Bergmann, D.C. (2014). Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity. Plant Cell 26, 3358-3371. https://doi.org/10.1105/tpc.114.127415
- Leivar, P., and Quail, P.H. (2010). PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19-28.
- Matsuoka, D., Nanmori, T., Sato, K.I., Fukami, Y., Kikkawa, U., and Yasuda, T. (2002). Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 29, 637-647. https://doi.org/10.1046/j.0960-7412.2001.01246.x
- Melikant, B., Giuliani, C., Halbmayer-Watzina, S., Limmongkon, A., Heberle-Bors, E., and Wilson, C. (2004). The Arabidopsis thaliana MEK AtMKK6 activates the MAP kinase AtMPK13. FEBS Lett. 576, 5-8. https://doi.org/10.1016/j.febslet.2004.08.051
- Molas, M.L., Kiss, J.Z., and Correll, M.J. (2006). Gene profiling of the red light signaling pathways in roots. J. Exp. Bot. 57, 3217-3229. https://doi.org/10.1093/jxb/erl086
- Oh, E., Zhu, J.Y., and Wang, Z.Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802-809. https://doi.org/10.1038/ncb2545
- Park, H.J., Ding, L., Dai, M., Lin, R., and Wang, H. (2008). Multisite phosphorylation of Arabidopsis HFR1 by casein kinase II and plausible role in regulating its degradation rate. J. Biol. Chem. 283, 23264-23273. https://doi.org/10.1074/jbc.M801720200
- Pitzschke, A., Djamei, A., Bitton, F., and Hirt, H. (2009). A major role of the MEKK1-MKK1/MKK2-MPK4 pathway in ROS signalling. Mol. Plant 2, 120-137. https://doi.org/10.1093/mp/ssn079
- Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., and Chory, J. (1993). Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147-157. https://doi.org/10.1105/tpc.5.2.147
- Sajio, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., and Deng, X.W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642-2647. https://doi.org/10.1101/gad.1122903
- Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballestros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999. https://doi.org/10.1038/nature01696
- Sethi, V., Raghuram, B., Sinha, A.K., and Chattopadhyay, S. (2014). A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26, 3343-3357. https://doi.org/10.1105/tpc.114.128702
- Sharma, S.K., and Carew, T.J. (2002). Inclusion of phosphatase inhibitors during western blotting enhances signal detection with phospho-specific antibodies. Anal. Biochem. 307, 187-189. https://doi.org/10.1016/S0003-2697(02)00008-8
- Soyano, T., Nishihama, R., Morikiyo, K., Ishikawa, M., and Machida, Y. (2003). NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev. 17, 1055-1067. https://doi.org/10.1101/gad.1071103
- Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19, 805-818. https://doi.org/10.1105/tpc.106.046581
- Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15, 141-152. https://doi.org/10.1016/j.molcel.2004.06.023
- Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinase in Arabidopsis. Plant Cell 19, 63-73. https://doi.org/10.1105/tpc.106.048298
- Wang, H., Liu, Y., Bruffett, K., Lee, J., Hause, G., Walker, J.C., and Zhang, S. (2008). Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20, 602-613. https://doi.org/10.1105/tpc.108.058032
- Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804-821. https://doi.org/10.1105/tpc.104.030205
-
Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in
$C_2H_2$ signalling. Nature 451, 789-795. https://doi.org/10.1038/nature06543 - Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9, 809-824. https://doi.org/10.1105/tpc.9.5.809
Cited by
- The CottonMitogen-Activated Protein Kinase Kinase 3Functions in Drought Tolerance by Regulating Stomatal Responses and Root Growth vol.57, pp.8, 2016, https://doi.org/10.1093/pcp/pcw090
- Convergence of Multiple MAP3Ks on MKK3 Identifies a Set of Novel Stress MAPK Modules vol.07, 2016, https://doi.org/10.3389/fpls.2016.01941
- An Arabidopsis kinase cascade influences auxin-responsive cell expansion vol.92, pp.1, 2017, https://doi.org/10.1111/tpj.13635
- The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) Acts Upstream of MKK3 and MPK18 in Two Separate Signaling Pathways Involved in Root Microtubule Functions vol.8, 2017, https://doi.org/10.3389/fpls.2017.01352
- Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01387
- Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4793-8
- Apple MPK4 mediates phosphorylation of MYB1 to enhance light‐induced anthocyanin accumulation vol.106, pp.6, 2015, https://doi.org/10.1111/tpj.15267