References
- A-Gonzalez, N., and Hidalgo, A. (2014). Nuclear receptors and clearance of apoptotic cells: stimulating the macrophage's appetite. Front. Immunol. 5, 211.
- Albert, M.L., Kim, J.I., and Birge, R.B. (2000). alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899-905. https://doi.org/10.1038/35046549
- Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B.S., Miroux, B., Couplan, E., Alves-Guerra, M.C., Goubern, M., Surwit, R., et al. (2000). Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435-439. https://doi.org/10.1038/82565
- Bouillaud, F. (1999). UCP1, UCP2 and UCP3: are they true uncouplers of respiration? Int. J. Obes. Relat. Metab. Disord. 23 (Suppl 6), S19-23. https://doi.org/10.1038/sj.ijo.0800938
- Echtay, K.S., Winkler, E., Bienengraeber, M., and Klingenberg, M. (2000). Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry 39, 3311-3317. https://doi.org/10.1021/bi992448m
- Echtay, K.S., Bienengraeber, M., and Klingenberg, M. (2001). Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). Biochemistry 40, 5243-5248. https://doi.org/10.1021/bi002130q
- Elliott, M.R., Chekeni, F.B., Trampont, P.C., Lazarowski, E.R., Kadl, A., Walk, S.F., Park, D., Woodson, R.I., Ostankovich, M., Sharma, P., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282-286. https://doi.org/10.1038/nature08296
- Erwig, L.P., and Henson, P.M. (2008). Clearance of apoptotic cells by phagocytes. Cell Death Differ. 15, 243-250. https://doi.org/10.1038/sj.cdd.4402184
- Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M.F., Surwit, R.S., Ricquier, D., et al. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272. https://doi.org/10.1038/ng0397-269
- Flier, J.S., and Lowell, B.B. (1997). Obesity research springs a proton leak. Nat. Genet. 15, 223-224. https://doi.org/10.1038/ng0397-223
- Han, C.Z., and Ravichandran, K.S. (2011). Metabolic connections during apoptotic cell engulfment. Cell 147, 1442-1445. https://doi.org/10.1016/j.cell.2011.12.006
- Henson, P.M., and Hume, D.A. (2006). Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244-250. https://doi.org/10.1016/j.it.2006.03.005
- Hochreiter-Hufford, A., and Ravichandran, K.S. (2013). Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748.
- Klingenberg, M., and Appel, M. (1989). The uncoupling protein dimer can form a disulfide cross-link between the mobile Cterminal SH groups. Eur. J. Biochem. 180, 123-131. https://doi.org/10.1111/j.1432-1033.1989.tb14622.x
- Krauss, S., Zhang, C.Y., and Lowell, B.B. (2005). The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 6, 248-261. https://doi.org/10.1038/nrm1592
- Lauber, K., Bohn, E., Krober, S.M., Xiao, Y.J., Blumenthal, S.G., Lindemann, R.K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., et al. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717-730. https://doi.org/10.1016/S0092-8674(03)00422-7
- Lauber, K., Blumenthal, S.G., Waibel, M., and Wesselborg, S. (2004). Clearance of apoptotic cells: getting rid of the corpses. Mo. Cell 14, 277-287. https://doi.org/10.1016/S1097-2765(04)00237-0
- Lee, J., Park, B., Kim, G., Kim, K., Pak, J., Kim, K., Ye, M.B., Park, S.G., and Park, D. (2014). Arhgef16, a novel Elmo1 binding partner, promotes clearance of apoptotic cells via RhoGdependent Rac1 activation. Biochim. Biophys. Acta 1843, 2438-2447. https://doi.org/10.1016/j.bbamcr.2014.07.006
- Lin, C.S., Hackenberg, H., and Klingenberg, E.M. (1980). The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study. FEBS Lett. 113, 304-306. https://doi.org/10.1016/0014-5793(80)80614-4
- Maderna, P., and Godson, C. (2003). Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim. Biophys. Acta 1639, 141-151. https://doi.org/10.1016/j.bbadis.2003.09.004
- Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., and Nagata, S. (2007). Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435-439. https://doi.org/10.1038/nature06307
- Nagata, S., Hanayama, R., and Kawane, K. (2010). Autoimmunity and the clearance of dead cells. Cell 140, 619-630. https://doi.org/10.1016/j.cell.2010.02.014
- Nedergaard, J., Ricquier, D., and Kozak, L.P. (2005). Uncoupling proteins: current status and therapeutic prospects. EMBO Rep. 6, 917-921. https://doi.org/10.1038/sj.embor.7400532
- Park, D., Tosello-Trampont, A.C., Elliott, M.R., Lu, M., Haney, L.B., Ma, Z., Klibanov, A.L., Mandell, J.W., and Ravichandran, K.S. (2007). BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430-434. https://doi.org/10.1038/nature06329
- Park, S.Y., Jung, M.Y., Kim, H.J., Lee, S.J., Kim, S.Y., Lee, B.H., Kwon, T.H., Park, R.W., and Kim, I.S. (2008). Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 15, 192-201. https://doi.org/10.1038/sj.cdd.4402242
- Park, D., Han, C.Z., Elliott, M.R., Kinchen, J.M., Trampont, P.C., Das, S., Collins, S., Lysiak, J.J., Hoehn, K.L., and Ravichandran, K.S. (2011). Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220-224. https://doi.org/10.1038/nature10340
- Ravichandran, K.S., and Lorenz, U. (2007). Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964-974. https://doi.org/10.1038/nri2214
- Thomas, S.A., and Palmiter, R.D. (1997). Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387, 94-97. https://doi.org/10.1038/387094a0
- Urbankova, E., Hanak, P., Skobisova, E., Ruzicka, M., and Jezek, P. (2003). Substitutional mutations in the uncoupling proteinspecific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport. Int. J. Biochem. Cell Biol. 35, 212-220. https://doi.org/10.1016/S1357-2725(02)00131-0
Cited by
- Uncoupling protein 2 deficiency reduces proliferative capacity of murine pancreatic stellate cells vol.15, pp.6, 2016, https://doi.org/10.1016/S1499-3872(16)60154-6
- vol.29, pp.7, 2018, https://doi.org/10.1089/ars.2017.7225
- Deletion of Mitochondrial Uncoupling Protein 2 Exacerbates Mitochondrial Damage in Mice Subjected to Cerebral Ischemia and Reperfusion Injury under both Normo- and Hyperglycemic Conditions vol.16, pp.15, 2015, https://doi.org/10.7150/ijbs.48204