DOI QR코드

DOI QR Code

Anion Transport or Nucleotide Binding by Ucp2 Is Indispensable for Ucp2-Mediated Efferocytosis

  • Lee, Suho (School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and Technology) ;
  • Moon, Hyunji (School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and Technology) ;
  • Kim, Gayoung (School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and Technology) ;
  • Cho, Jeong Hoon (Department of Biology Education, College of Education, Chosun University) ;
  • Lee, Dae-Hee (Department of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh) ;
  • Ye, Michael B. (School of Liberal Arts and Sciences, Gwangju Institute of Science and Technology) ;
  • Park, Daeho (School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and Technology)
  • Received : 2015.03.30
  • Accepted : 2015.04.16
  • Published : 2015.07.31

Abstract

Rapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells. However, the functions of Ucp2, beyond its possible role in dissipating the mitochondrial membrane potential, that contribute to elevation of the phagocytic capacity have not been determined. Here, we report that the anion transfer or nucleotide binding activity of Ucp2, as well as its dissipation of the mitochondrial membrane potential, is necessary for Ucp2-mediated engulfment of apoptotic cells. To study these properties, we generated Ucp2 mutations that affected three different functions of Ucp2, namely, dissipation of the mitochondrial membrane potential, transfer of anions, and binding of purine nucleotides. Mutations of Ucp2 that affected the proton leak did not enhance the engulfment of apoptotic cells. Although anion transfer and nucleotide binding mutations did not affect the mitochondrial membrane potential, they exerted a dominant-negative effect on Ucp2-mediated engulfment. Furthermore, none of our Ucp2 mutations increased the phagocytic capacity. We conclude that dissipation of the proton gradient by Ucp2 is not the only determinant of the phagocytic capacity and that anion transfer or nucleotide binding by Ucp2 is also essential for Ucp2-mediated engulfment of apoptotic cells.

Keywords

References

  1. A-Gonzalez, N., and Hidalgo, A. (2014). Nuclear receptors and clearance of apoptotic cells: stimulating the macrophage's appetite. Front. Immunol. 5, 211.
  2. Albert, M.L., Kim, J.I., and Birge, R.B. (2000). alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899-905. https://doi.org/10.1038/35046549
  3. Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B.S., Miroux, B., Couplan, E., Alves-Guerra, M.C., Goubern, M., Surwit, R., et al. (2000). Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435-439. https://doi.org/10.1038/82565
  4. Bouillaud, F. (1999). UCP1, UCP2 and UCP3: are they true uncouplers of respiration? Int. J. Obes. Relat. Metab. Disord. 23 (Suppl 6), S19-23. https://doi.org/10.1038/sj.ijo.0800938
  5. Echtay, K.S., Winkler, E., Bienengraeber, M., and Klingenberg, M. (2000). Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry 39, 3311-3317. https://doi.org/10.1021/bi992448m
  6. Echtay, K.S., Bienengraeber, M., and Klingenberg, M. (2001). Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). Biochemistry 40, 5243-5248. https://doi.org/10.1021/bi002130q
  7. Elliott, M.R., Chekeni, F.B., Trampont, P.C., Lazarowski, E.R., Kadl, A., Walk, S.F., Park, D., Woodson, R.I., Ostankovich, M., Sharma, P., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282-286. https://doi.org/10.1038/nature08296
  8. Erwig, L.P., and Henson, P.M. (2008). Clearance of apoptotic cells by phagocytes. Cell Death Differ. 15, 243-250. https://doi.org/10.1038/sj.cdd.4402184
  9. Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M.F., Surwit, R.S., Ricquier, D., et al. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272. https://doi.org/10.1038/ng0397-269
  10. Flier, J.S., and Lowell, B.B. (1997). Obesity research springs a proton leak. Nat. Genet. 15, 223-224. https://doi.org/10.1038/ng0397-223
  11. Han, C.Z., and Ravichandran, K.S. (2011). Metabolic connections during apoptotic cell engulfment. Cell 147, 1442-1445. https://doi.org/10.1016/j.cell.2011.12.006
  12. Henson, P.M., and Hume, D.A. (2006). Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244-250. https://doi.org/10.1016/j.it.2006.03.005
  13. Hochreiter-Hufford, A., and Ravichandran, K.S. (2013). Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748.
  14. Klingenberg, M., and Appel, M. (1989). The uncoupling protein dimer can form a disulfide cross-link between the mobile Cterminal SH groups. Eur. J. Biochem. 180, 123-131. https://doi.org/10.1111/j.1432-1033.1989.tb14622.x
  15. Krauss, S., Zhang, C.Y., and Lowell, B.B. (2005). The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 6, 248-261. https://doi.org/10.1038/nrm1592
  16. Lauber, K., Bohn, E., Krober, S.M., Xiao, Y.J., Blumenthal, S.G., Lindemann, R.K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., et al. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717-730. https://doi.org/10.1016/S0092-8674(03)00422-7
  17. Lauber, K., Blumenthal, S.G., Waibel, M., and Wesselborg, S. (2004). Clearance of apoptotic cells: getting rid of the corpses. Mo. Cell 14, 277-287. https://doi.org/10.1016/S1097-2765(04)00237-0
  18. Lee, J., Park, B., Kim, G., Kim, K., Pak, J., Kim, K., Ye, M.B., Park, S.G., and Park, D. (2014). Arhgef16, a novel Elmo1 binding partner, promotes clearance of apoptotic cells via RhoGdependent Rac1 activation. Biochim. Biophys. Acta 1843, 2438-2447. https://doi.org/10.1016/j.bbamcr.2014.07.006
  19. Lin, C.S., Hackenberg, H., and Klingenberg, E.M. (1980). The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study. FEBS Lett. 113, 304-306. https://doi.org/10.1016/0014-5793(80)80614-4
  20. Maderna, P., and Godson, C. (2003). Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim. Biophys. Acta 1639, 141-151. https://doi.org/10.1016/j.bbadis.2003.09.004
  21. Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., and Nagata, S. (2007). Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435-439. https://doi.org/10.1038/nature06307
  22. Nagata, S., Hanayama, R., and Kawane, K. (2010). Autoimmunity and the clearance of dead cells. Cell 140, 619-630. https://doi.org/10.1016/j.cell.2010.02.014
  23. Nedergaard, J., Ricquier, D., and Kozak, L.P. (2005). Uncoupling proteins: current status and therapeutic prospects. EMBO Rep. 6, 917-921. https://doi.org/10.1038/sj.embor.7400532
  24. Park, D., Tosello-Trampont, A.C., Elliott, M.R., Lu, M., Haney, L.B., Ma, Z., Klibanov, A.L., Mandell, J.W., and Ravichandran, K.S. (2007). BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430-434. https://doi.org/10.1038/nature06329
  25. Park, S.Y., Jung, M.Y., Kim, H.J., Lee, S.J., Kim, S.Y., Lee, B.H., Kwon, T.H., Park, R.W., and Kim, I.S. (2008). Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 15, 192-201. https://doi.org/10.1038/sj.cdd.4402242
  26. Park, D., Han, C.Z., Elliott, M.R., Kinchen, J.M., Trampont, P.C., Das, S., Collins, S., Lysiak, J.J., Hoehn, K.L., and Ravichandran, K.S. (2011). Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220-224. https://doi.org/10.1038/nature10340
  27. Ravichandran, K.S., and Lorenz, U. (2007). Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964-974. https://doi.org/10.1038/nri2214
  28. Thomas, S.A., and Palmiter, R.D. (1997). Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387, 94-97. https://doi.org/10.1038/387094a0
  29. Urbankova, E., Hanak, P., Skobisova, E., Ruzicka, M., and Jezek, P. (2003). Substitutional mutations in the uncoupling proteinspecific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport. Int. J. Biochem. Cell Biol. 35, 212-220. https://doi.org/10.1016/S1357-2725(02)00131-0

Cited by

  1. Uncoupling protein 2 deficiency reduces proliferative capacity of murine pancreatic stellate cells vol.15, pp.6, 2016, https://doi.org/10.1016/S1499-3872(16)60154-6
  2. vol.29, pp.7, 2018, https://doi.org/10.1089/ars.2017.7225
  3. Deletion of Mitochondrial Uncoupling Protein 2 Exacerbates Mitochondrial Damage in Mice Subjected to Cerebral Ischemia and Reperfusion Injury under both Normo- and Hyperglycemic Conditions vol.16, pp.15, 2015, https://doi.org/10.7150/ijbs.48204