References
- Bruder, S.P., Jaiswal, N., Haynesworth, S.E. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem 64, 278-294. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
- Chen, D.C., Avansino, J.R., Agopian, V.G., Hoagland, V.D., Woolman, J.D., Pan, S., Ratner, B.D., and Stelzner, M. (2006). Comparison of polyester scaffolds for bioengineered intestinal mucosa. Cells Tissues Organs 184, 154-165. https://doi.org/10.1159/000099622
- Chen, Q., Zhang, Z., Liu, J., He, Q., Zhou, Y., Shao, G., Sun, X., Cao, X., Gong, A., and Jiang P. (2015). A fibrin matrix promotes the differentiation of EMSCs isolated from nasal respiratory mucosa to myelinating phenotypical Schwann-like cells. Mol. Cells 38, 221-228.
- Costa-Pinto, A.R., Correlo, V.M., Sol, P.C., Bhattacharya, M., Charbord, P., Delorme, B., Reis, R.L., and Neves, N.M. (2009). Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules 10, 2067-2073. https://doi.org/10.1021/bm9000102
- da Silva, G.R., Junior Ada, S., Saliba, J.B., Berdugo, M., Goldenberg, B.T., Naud, M.C., Ayres, E., Orefice, R.L., and Cohen, F.B. (2011). Polyurethanes as supports for human retinal pigment epithelium cell growth. Int. J. Artif. Organs 34, 198-209. https://doi.org/10.5301/IJAO.2011.6398
- De Kok, I.J., Peter, S.J., Archambault, M., van den Bos, C., Kadiyala, S., Aukhil, I., and Cooper, L.F. (2003). Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: preliminary findings. Clin. Oral Implants Res. 14, 481-489. https://doi.org/10.1034/j.1600-0501.2003.110770.x
- Deng, C., Zhang, P., Vulesevic, B., Kuraitis, D., Li, F., Yang, A.F., Griffith, M., Ruel, M., and Suuronen, E.J. (2010). A collagenchitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng. Part A 16, 3099-3109. https://doi.org/10.1089/ten.tea.2009.0504
- Duailibi, M.T., Duailibi, S.E., Young, C.S., Bartlett, J.D., Vacanti, J.P., and Yelick, P.C. (2004). Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res. 83, 523-528. https://doi.org/10.1177/154405910408300703
- Green, D.W., Kwon, H.J., and Jung, H.S. (2015). Osteogenic potency of nacre on human mesenchymal stem cells. Mol. Cells 38, 267-272. https://doi.org/10.14348/molcells.2015.2315
- Hennink, W.E., De Jong, S.J., Bos, G.W., Veldhuis, T.F., and van Nostrum, C.F. (2004). Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int. J. Pharm. 277, 99-104. https://doi.org/10.1016/j.ijpharm.2003.02.002
- Heo, J.Y., Jing, K., Song, K.S., Seo, K.S., Park, J.H., Kim, J.S., Jung, Y.J., Hur, G.M., Jo, D.Y., Kweon, G.R., et al. (2009). Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells. Stem Cells 27, 1455-1462. https://doi.org/10.1002/stem.54
- Ho, Y.C., Mi, F.L., Sung, H.W., and Kuo, P.L. (2009). Heparinfunctionalized chitosan-alginate scaffolds for controlled release of growth factor. Int. J. Pharm. 376, 69-75. https://doi.org/10.1016/j.ijpharm.2009.04.048
-
Im, S.J., Choi, U.M., Subramanyam, E., Huh, K.M., and Park, K. (2007). Synthesis and characterization of biodegradable elastic hydrogels based on poly(ethylene glycol) and poly(
${\varepsilon}$ -caprolactone) blocks. Macromol. Res. 15, 363-369. https://doi.org/10.1007/BF03218800 - Kanczler, J.M., Barry, J., Ginty, P., Howdle, S.M., Shakesheff, K.M., and Oreffo, R.O. (2007). Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem. Biophys. Res. Commun. 352, 135-141. https://doi.org/10.1016/j.bbrc.2006.10.187
- Kanczler, J.M., Ginty, P.J., Barry, J.J., Clarke, N.M., Howdle, S.M., Shakesheff, K.M., and Oreffo, R.O. (2008). The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials 29, 1892-1900. https://doi.org/10.1016/j.biomaterials.2007.12.031
- Khare, A.R., and Peppas, N.A. (1993). Release behavior of bioactive agents from pH-sensitive hydrogels. J. Biomater. Sci. Polym. Ed. 4, 275-289. https://doi.org/10.1163/156856293X00564
- Kim, H.J., Lee, J.H., and Im, G.I. (2010). Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J. Biomed. Mater. Res. A 92, 659-666.
- Kleinman, H.K., and Martin, G.R. (2005). Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378-386. https://doi.org/10.1016/j.semcancer.2005.05.004
- Laschke, M.W., Rucker, M., Jensen, G., Carvalho, C., Mulhaupt, R., Gellrich, N.C., and Menger, M.D. (2008). Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. J. Biomed. Mater. Res. A 85, 397-407.
- Lee, K.Y., and Mooney, D.J. (2001). Hydrogels for tissue engineering. Chem. Rev. 101, 1869-1879. https://doi.org/10.1021/cr000108x
- Lee, H.Y., Jin, G.Z., Shin, U.S., Kim, J.H., and Kim, H.W. (2012). Novel porous scaffolds of poly(lactic acid) produced by phaseseparation using room temperature ionic liquid and the assessments of biocompatibility. J. Mater. Sci. Mater. Med. 23, 1271-1279. https://doi.org/10.1007/s10856-012-4588-4
- Li, W.J., Chiang, H., Kuo, T.F., Lee, H.S., Jiang, C.C., and Tuan, R.S. (2009). Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J. Tissue Eng. Regen. Med. 3, 1-10. https://doi.org/10.1002/term.127
- Lin, J., Lindsey, M.L., Zhu, B., Agrawal, C.M., and Bailey, S.R. (2007). Effects of surface-modified scaffolds on the growth and differentiation of mouse adipose-derived stromal cells. J. Tissue Eng. Regen. Med. 1, 211-217. https://doi.org/10.1002/term.27
- Mankani, M.H., Kuznetsov, S..A, Fowler, B., Kingman, A., and Robey, P.G. (2001). In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol. Bioeng. 72, 96-107. https://doi.org/10.1002/1097-0290(20010105)72:1<96::AID-BIT13>3.0.CO;2-A
- Mehdizadeh, H., Sumo, S., Bayrak, E.S., Brey, E.M., and Cinar, A. (2013). Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 34, 2875-2887. https://doi.org/10.1016/j.biomaterials.2012.12.047
- Papo, N., Silverman, A.P., Lahti, J.L., and Cochran, J.R. (2011). Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and alphavbeta3 integrin. Proc. Natl. Acad. Sci. USA 108, 14067-14072. https://doi.org/10.1073/pnas.1016635108
- Park, J.S., Woo, D.G., Sun, B.K., Chung, H.M., Im, S.J., Choi, Y.M., Park, K., Huh, K.M., and Park, K.H. (2007). In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Control. Release 124, 51-59. https://doi.org/10.1016/j.jconrel.2007.08.030
- Park, J.S., Yang, H.J., Woo, D.G., Yang, H.N., Na, K., and Park, K.H. (2010). Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. J. Biomed. Mater. Res. A 92, 806-816.
- Perets, A., Baruch, Y., Weisbuch, F., Shoshany, G., Neufeld, G., and Cohen, S. (2003). Enhancing the vascularization of threedimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A 65, 489-497.
- Peters, M.C., Polverini, P.J., and Mooney, D.J. (2002). Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60, 668-678. https://doi.org/10.1002/jbm.10134
- Phinney, D.G., and Prockop, D.J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25, 2896-2902. https://doi.org/10.1634/stemcells.2007-0637
- Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
- Schantz, J.T., Hutmacher, D.W., Lam, C.X., Brinkmann, M., Wong, K.M., Lim, T.C., Chou, N., Guldberg, R.E., and Teoh, S.H. (2003). Repair of calvarial defects with customised tissueengineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng. 9 (Suppl 1), S127-139.
- Schmidmaier, G., Wildemann, B., Stemberger, A., Haas, N.P., and Raschke, M. (2001). Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors. J. Biomed. Mater. Res. 58, 449-455. https://doi.org/10.1002/jbm.1040
- Tabata, Y., and Ikada, Y. (1999). Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20, 2169-2175. https://doi.org/10.1016/S0142-9612(99)00121-0
- Tanaka, T., Hirose, M., Kotobuki, N., Tadokoro, M., Ohgushi, H., Fukuchi, T., Sato, J., and Seto, K. (2009). Bone augmentation by bone marrow mesenchymal stem cells cultured in threedimensional biodegradable polymer scaffolds. J. Biomed. Mater. Res. A 91, 428-435.
- Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P., and Lou, J. (2003). Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthop. Res. 21, 44-53. https://doi.org/10.1016/S0736-0266(02)00108-0
- Yang, X., Castilla, L.H., Xu, X., Li, C., Gotay, J., Weinstein, M., Liu, P.P., and Deng, C.X. (1999). Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126, 1571-1580.
- Yang, X.B., Webb, D., Blaker, J., Boccaccini, A.R., Maquet, V., Cooper, C., and Oreffo, R.O. (2006). Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites. Biochem. Biophys. Res. Commun. 342, 1098-1107. https://doi.org/10.1016/j.bbrc.2006.02.021
- Yang, F., Cho, S.W., Son, S.M., Bogatyrev, S.R., Singh, D., Green, J.J., Mei, Y., Park, S., Bhang, S.H., Kim, B.S., et al. (2010). Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA 107, 3317-3322. https://doi.org/10.1073/pnas.0905432106
- Zanatta, G., Rudisile, M., Camassola, M., Wendorff, J., Nardi, N., Gottfried, C., Pranke, P., and Netto, C.A. (2012). Mesenchymal stem cell adherence on poly(D, L-lactide-co-glycolide) nanofibers scaffold is integrin-beta 1 receptor dependent. J. Biomed. Nanotechnol. 8, 211-218. https://doi.org/10.1166/jbn.2012.1382
- Zeiser, R., Marks, R., Bertz, H., and Finke, J. (2004). Immunopathogenesis of acute graft-versus-host disease: implications for novel preventive and therapeutic strategies. Ann. Hematol. 83, 551-565.
Cited by
- Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions vol.2016, 2016, https://doi.org/10.1155/2016/2869572
- Vascular endothelial growth factor for the treatment of femoral head osteonecrosis: An experimental study in canines vol.9, pp.9, 2018, https://doi.org/10.5312/wjo.v9.i9.120
- Hydrogel based 3D carriers in the application of stem cell therapy by direct injection vol.6, pp.5, 2015, https://doi.org/10.1515/ntrev-2017-0115
- Hydrogel based 3D carriers in the application of stem cell therapy by direct injection vol.6, pp.5, 2015, https://doi.org/10.1515/ntrev-2017-0115
- Tissue engineering strategies for the induction of angiogenesis using biomaterials vol.12, pp.1, 2015, https://doi.org/10.1186/s13036-018-0133-4
- In Vitro Study of the Interaction of Innate Immune Cells with Liquid Silicone Rubber Coated with Zwitterionic Methyl Methacrylate and Thermoplastic Polyurethanes vol.14, pp.20, 2015, https://doi.org/10.3390/ma14205972