• Title/Summary/Keyword: Mitogen activated protein kinase

Search Result 793, Processing Time 0.041 seconds

Polyphenol mixture of a native Korean variety of Artemisia argyi H. (Seomae mugwort) and its anti-inflammatory effects

  • Seong Min Kim;Soo Jung Lee;Venu Venkatarame;Gowda Saralamma;Sang Eun Ha;Preethi Vetrivel;Kebede Taye Desta;Jin Young Choi;Won Sup Lee;Sung Chul Shin;Gon-Sup Kim
    • International Journal of Molecular Medicine
    • /
    • v.44 no.5
    • /
    • pp.1741-1752
    • /
    • 2019
  • In the present study, a polyphenolic mixture was isolated from Seomae mugwort (SM; a native Korean variety of Artemisia argyi H.) via extraction with aqueous 70% methanol followed by the elution of ethyl acetate over a silica gel column. Each polyphenolic compound was analyzed using high-performance liquid chromatography coupled with tandem mass spectrometry, and compared with the literature. In addition to the 14 characterized components, one hydroxycinnamate, six flavonoids, and one lignan were reported for the first time, to the best our knowledge, in Artemisia argyi H. The anti-inflammatory properties of SM polyphenols were studied in lipopolysaccharide-treated RAW 264.7 macrophage cells. The SM polyphenols attenuated the activation of macrophages via the inhibition of nitric oxide production, nuclear factor-κB activation, the mRNA expression of inducible nitric oxide synthase, tumor necrosis factor α and interleukin-1β, and the phosphorylation of mitogen-activated protein kinase. Our results suggested that SM polyphenols may have therapeutic potential for the treatment of inflammatory-related diseases.

Correlation between Clinicopathology and Expression of HSP70, BAG1 and Raf-1 in Human Diffuse Type Gastric Carcinoma (미만형 위암에서 임상병리학적 인자와 Hsp70, BAG1과 Raf-1 발현간의 상관성)

  • Jung, Sang Bong;Lee, Hyoun Wook;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.101-108
    • /
    • 2016
  • The aim of this study was to evaluate the relationships between the expression of Heat shock protein70 (HSP70), Raf-1 and Bcl-2-associated athanogene-1 (BAG1) protein in diffuse type gastric carcinoma and examine association of HSP70, Raf-1 and BAG1 expression with various clinic-pathological factors and survival. Heat shock protein70 is induced in the cells in response to various stress conditions, including carcinogens. Overexpression of heat shock protein 70 has been observed in many types of cancer. The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. Overexpression of BAG1 protein has been documented in some type of human cancer. BAG1 has been reported to interact with protein involved with a variety of signal pathway, and regulation of cell differentiation, survival and apoptosis. These interaction partners include HSP70 and Raf-1. The percentage of tumors exhibiting HSP70 positivity was significantly in cases of positive lymph node metastasis (64.9%) compared to cases without lymph node metastasis (35.1%, p=0.007). HS70 expression was correlated with pathological N-stage (p=0.006). Expression of BAG1 was detected in the majority of diffuse type gastric carcinoma tissues (71.7%), especially in younger patients (80% vs 52.6%, p=0.035). Furthermore BAG1 expression was correlated with tumor size (p=0.020). Raf-1 expression was found to be significantly associated with tumor size (p=0.005). The result indicate that HSP70 was significantly correlated the progression of diffuse type gastric cancer. Expression of BAG1 and Raf-1 may be used as diagnostic markers for gastric carcinoma.

Artemisia capillaris Thunb. inhibits cell growth and induces apoptosis in human hepatic stellate cell line LX2

  • Kim, Young-Il;Lee, Jang-Hoon;Park, Seung-Won;Choi, In-Hwa;Friedman, Scott L.;Woo, Hong-Jung;Kim, Young-Chul
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.254-262
    • /
    • 2010
  • Artemisia capillaris (A. capillaries) is known to play roles in many cellular events, such as cell proliferation, differentiation, and apoptosis. We investigated the antifibrogenic efficacy of A. capillaris in the immortalized human hepatic stellate cell line LX2. Cell proliferation was determined by the MTT assay. Cell cycle was analyzed by the flow cytometry. Apoptotic cells were measured using a cell death detection ELISA. Caspase activity was detected by a colorimetric assay. The mRNA level of Bcl-2 and Bax mRNA were measured by real-time PCR. MEK and ERK protein were detected by Western blot analysis. We provide evidence that A. capillaris induces cell cycle arrest, apoptosis, and potently inhibits the mitogen-activated protein kinase pathway. A. capillaris inhibited cell proliferation of LX2 cells in a dose- and time-dependent manner, increased the apoptosis fraction at cell cycle analysis with an accompanying DNA fragmentation, and resulted in a significant decrease in Bcl-2 mRNA levels and an increase in Bax expression. Exposure of LX2 cells to A. capillaris induced caspase-3 activation, but co-treatment of A. capillaris with the pan-caspase inhibitor Z-VAD-FMK, and the caspase-3 inhibitor Z-DEVE-FMK, blocked apoptosis. A. capillaris down-regulated Mcl-1 protein levels and inhibited phosphorylation of MEK/ERK, suggesting that it mediates cell death in LX2 cells through the down-regulation of Mcl-1 protein via a MEK/ERK-independent pathway.

Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

  • Do, Jin Hwan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.672-684
    • /
    • 2014
  • The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium ($MPP^+$) induces cellular changes characteristic of PD, and $MPP^+$-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in $MPP^+$-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in $MPP^+$-induced neuronal cell death. Moreover, the toxicity signal of $MPP^+$ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by $MPP^+$.

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand (인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가)

  • Xu, Qi;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1690-1697
    • /
    • 2009
  • CD11c and costimulatory molecules such as CD80 and CD86 express mainly in dendritic cells (DCs). In this study, we investigated the biologic effects of recombinant Fms-like tyrosine kinase-3 (Flt-3) ligand on the expression of DC surface markers, including CD11c in leukemia cell lines, such as KG-1, HL-60, NB4, and THP-1 cells. The expression of the Flt-3 receptor was found in NB4 and HL-60 cells, as well as KG-1 cells, but not in THP-1 cells. When KG-1 cells were cultured in a medium containing Flt-3 ligand or granulocyte macrophage-colony stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-$\alpha$, cell proliferation was inhibited and the expression levels of CD11c, major histocompatibility complex (MHC)-I, and MHC-II were increased in the cells. Flt-3 ligand also increased the expression level of CD11c on HL-60 and NB4 cells, but not on THP-1 cells. In comparison with CD11c expression, the expression level of CD11b on KG-1 cells, but not on NB4 and HL-60 cells, was slightly increased by Flt-3 ligand. Flt-3 ligand induced phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in KG-1 cells, and the up-regulation of CD11c expression by Flt-3 ligand in the cells was abrogated by PD98059, an inhibitor of MEK. The results suggest that Flt-3 ligand up-regulates DC surface markers on $CD34^+$ myelomonocytic KG-1 cells, as well as promyelocytic leukemia cells, and that the differentiation of the leukemia cells into DC-like cells by Flt-3 ligand is mediated by ERK-1/2 activity.

CLK3 is a Novel Negative Regulator of NF-κB Signaling (NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능)

  • Byeol-Eun, Jeon;Chan-Seong, Kwon;Ji-Eun, Lee;Ye-Lin, Woo;Sang-Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.833-840
    • /
    • 2022
  • Chronic inflammation has been shown to be closely associated with tumor development and progression. Nuclear factor kappa B (NF-κB) is composed of a family of five transcription factors. NF-κB signaling plays a crucial role in the inflammatory response and is often found to be dysregulated in various types of cancer, making it an attractive target in cancer therapeutics. In this study, CDC-like kinase 3 (CLK3) was identified as a novel kinase that regulates the NF-κB signaling pathway. Our data demonstrate that CLK3 inhibits the canonical and non-canonical NF-κB pathways. Luciferase assays following the transient or stable expression of CLK3 indicated that this kinase inhibited NF-κB activation mediated by Tumor necrosis factor-alpha (TNFα) and Phorbol 12-myristate 13-acetate (PMA), which are known to activate NF-κB signaling via the canonical pathway. Consistent with data on the ectopic expression of CLK3, CLK3 knockdown using shRNA constructs increased NF-κB activity 1.5-fold upon stimulation with TNFα in HEK293 cells compared with the control cells. Additionally, overexpression of CLK3 suppressed the activation of this signaling pathway induced by NF-κB-inducing kinase (NIK) or CD40, which are well-established activators of the non-canonical pathway. To further examine the negative impact of CLK3 on NF-κB signaling, we performed Western blotting following the TNFα treatment to directly identify the molecular components of the NF-κB pathway that are affected by this kinase. Our results revealed that CLK3 mitigated the phosphorylation/activation of transforming growth factor-α-activated kinase 1 (TAK1), inhibitor of NF-κB kinase alpha/beta (IKKα/α), NF-κB p65 (RelA), NF-κB inhibitor alpha (IκBα), and Extracellular signal-regulated kinase 1/2-Mitogen-activated protein kinase (ERK1/2-MAPK), suggesting that CLK3 inhibits both the NF-κB and MAPK signaling activated by TNFα exposure. Further studies are required to elucidate the mechanism by which CLK3 inhibits the canonical and non-canonical NF-κB pathways. Collectively, these findings reveal CLK3 as a novel negative regulator of NF-κB signaling.

Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein

  • Lee, Sun-Hwa;Kim, Dae-Won;Eom, Seon-Ae;Jun, Se-Young;Park, Mee-Young;Kim, Duk-Soo;Kwon, Hyung-Joo;Kwon, Hyeok-Yil;Han, Kyu-Hyung;Park, Jin-Seu;Hwang, Hyun-Sook;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.354-359
    • /
    • 2012
  • We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPA-induced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin-1 beta (IL-$1{\beta}$), IL-6, and tumor necrosis factor-alpha (TNF-${\alpha}$). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) and phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-${\kappa}B$ and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.