DOI QR코드

DOI QR Code

Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein

  • Lee, Sun-Hwa (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eom, Seon-Ae (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Jun, Se-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Park, Mee-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwon, Hyeok-Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Han, Kyu-Hyung (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2012.02.19
  • Accepted : 2012.03.19
  • Published : 2012.06.30

Abstract

We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPA-induced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin-1 beta (IL-$1{\beta}$), IL-6, and tumor necrosis factor-alpha (TNF-${\alpha}$). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) and phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-${\kappa}B$ and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.

Keywords

References

  1. Bertolini, A., Ottani, A. and Sandrini, M. (2002) Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr. Med. Chem. 9, 1033-1043. https://doi.org/10.2174/0929867024606650
  2. Firestein, G. S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361. https://doi.org/10.1038/nature01661
  3. Korhonen, R., Lathi, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 471-479. https://doi.org/10.2174/1568010054526359
  4. Libby, P., Ridker, P. M. and Maseri, A. (2000) Inflammation and atherosclerosis. Circulation 105, 1135-1143.
  5. Cho, H. J., Seon, M. R., Lee, Y. M., Kim, J., Kim, J. K., Kim, S. G. and Park, J. H. (2008) 3,3'-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophage. J. Nutr. 138, 17-23. https://doi.org/10.1093/jn/138.1.17
  6. Tilley, S. L., Coffman, T. M. and Koller, B. A. (2001) Mixed message gene: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. 107, 191-195. https://doi.org/10.1172/JCI9862
  7. Carey, M. A., Germolec, D. R., Langenbach, R. and Zeldin, D. C. (2003) Cyclooxygenase enzymes in allergic inflammation and asthma. Prostaglandins Leukot Essent Fatty Acids 69, 157-162. https://doi.org/10.1016/S0952-3278(03)00076-0
  8. Lee, E., Choi, M. K., Lee, Y. J., Ku, J. L., Kim, K. H., Choi, J. S. and Lim, S. J. (2006) Alpha-tocopheryl succinate, in contrast to alpha-tocopherol and alpha-tocopheryl acetate, inhibits prostaglandin E2 production in human lung epithelial cells. Carcinogen 27, 2308-2315. https://doi.org/10.1093/carcin/bgl073
  9. Vancheri, C., Mastruzzo, C., Sortino, M. A. and Crimi, N. (2004) The lung as a privileged site for the beneficial actions of PEG2. Trends Immunol. 25, 40-46. https://doi.org/10.1016/j.it.2003.11.001
  10. Buchanan, M. M., Hutchinson, M., Watkins, L. R. and Yin, H. (2010) Toll-like receptor 4 in CNS pathologies. J. Neurochem. 114, 13-27.
  11. Mararov, S. S. (2000) NF-${\kappa}B$ as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6, 441-448. https://doi.org/10.1016/S1357-4310(00)01814-1
  12. Babbin, B., Laukoetter, M. G., Nava, P., Koch, S., Lee, W. Y., Capaldo, C. T., Peatman, E., Severson, E. A., Flower, R. J., Perretti, M., Parkos, C. A. and Nusrat, A. (2008) Annexin A1 regulates intestinal mucosal injury, inflammation, and repair. J. Immunol. 181, 5035-5044. https://doi.org/10.4049/jimmunol.181.7.5035
  13. Kamal, A. M., Flower, R. J. and Perretti, M. (2005) An overview of the effects of annexin 1 on cells involved in the inflammatory process. Mem. Inst. Oswaldo Cruz Rio de Janeiro 100(Suppl 1), 39-48.
  14. Perretti, M. and D'Acquisto, F. (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rew. Immunol. 9, 62-70. https://doi.org/10.1038/nri2470
  15. Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  16. Ahn, E. H., Kim, D. W., Kang, H. W., Shin, M. J., Won, M. H., Kim, J., Kim, D. J., Kwon, O. S., Kang, T. C., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicol. 276, 192-197. https://doi.org/10.1016/j.tox.2010.08.004
  17. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Lee, M. J., Jeong, M. S., Kim, D. W., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275, 1296-1308. https://doi.org/10.1111/j.1742-4658.2008.06291.x
  18. Kim, D. W., Jeong, H. J., Kang, H. W., Shin, M. J., Sohn, E. J., Kim, M. J., Ahn, E. H., An, J. J., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Hwang, I. K., Kwon, O. S., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2009) Transduced PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic. Biol. Med. 47, 941-952. https://doi.org/10.1016/j.freeradbiomed.2009.06.036
  19. Lee, S. H., Jeong, H. J., Kim, D. W., Sohn, E. J., Kim, M. J., Kim, D. S., Kang, T. C., Lim, S. S., Kang, I. J., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2010) Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43, 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
  20. Lee, S. H., Kim, D. W., Back, S. S., Hwang, H. S., Park, E. Y., Kang, T. C., Kwon, O. S., Park, J. H., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2011) Transduced Tat-annexin protein suppresses lipopolysaccharide (LPS)-stimulated inflammation gene expression in Raw 264.7 cells. BMB Rep. 44, 484-489. https://doi.org/10.5483/BMBRep.2011.44.7.484
  21. Stanley, P. L., Steiner, S., Havens, M. and Tramposch, K. M. (1991) Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 4, 262-271. https://doi.org/10.1159/000210960
  22. DeVry, C. G., Valdez, M., Lazarov, M., Muhr, E., Buelow, R., Fong, T. and Iyer, S. (2005) Topical application of a novel immunomodulatory peptide, RDP58, reduces skin inflammation in the phorbol ester-induced dermatitis model. J. Invest. Dermatol. 125, 473-481. https://doi.org/10.1111/j.0022-202X.2005.23831.x
  23. Ha, H. Y., Kim, Y., Ryoo, Z. Y. and Kim, T. Y. (2006) Inhibition of the TPA-induced cutaneous inflammation and hyperplasia by EC-SOD. Biochem. Biophys. Res. Commun. 348, 450-458. https://doi.org/10.1016/j.bbrc.2006.07.079
  24. Murakawa, M., Yamaoka, K., Tanaka, Y. and Fukuda, Y. (2006) Involvement of tumor necrosis factor (TNF)-$\alpha$ in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)- induced skin edema in mice. Biochem. Pharmacol. 71, 1331-1336. https://doi.org/10.1016/j.bcp.2006.01.005
  25. Flower, R. J. (1988) Lipocortin and the mechanism of action of the glucocorticoid. Br. J. Pharmacol. 94, 987-1015. https://doi.org/10.1111/j.1476-5381.1988.tb11614.x
  26. Chiang, N., Fierro, I. M., Gronert, K. and Serhan, C. N. (2000) Activation of lipoxin A4 receptors by aspirin- triggered lipoxins and select peptides evokes ligands- specific responses in inflammation. J. Exp. Med. 191, 1197-1208. https://doi.org/10.1084/jem.191.7.1197
  27. Kieran, N. E., Doran, P. P., Connolly, S. B., Greenan, M. C., Higgins, D. F., Leonard, M., Godson, C., Taylor, C. T., Henger, A., Kretzler, M., Burne, M. J., Rabb, H. and Brady, H. R. (2003) Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int. 64, 480-492. https://doi.org/10.1046/j.1523-1755.2003.00106.x
  28. Gayathri, B., Manjula, N., Vinaykumar, K. S., Lakshmi, B. S. and Balakrishnan, A. (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNF-$\alpha$, IL-$1{\beta}$, NO and MAP kinases. Int. Immunopharmacol. 7, 473-482. https://doi.org/10.1016/j.intimp.2006.12.003
  29. Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cited by

  1. Insight into the Anti-Inflammatory Mechanism of Action of Atrial Natriuretic Peptide, a Heart Derived Peptide Hormone: Involvement of COX-2, MMPs, and NF-kB Pathways vol.22, pp.4, 2016, https://doi.org/10.1007/s10989-016-9525-9
  2. 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways vol.33, pp.4, 2014, https://doi.org/10.3892/ijmm.2014.1652
  3. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-101
  4. Chemopreventive efficacy of menthol on carcinogen-induced cutaneous carcinoma through inhibition of inflammation and oxidative stress in mice vol.82, 2015, https://doi.org/10.1016/j.fct.2015.04.025
  5. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia vol.212, 2014, https://doi.org/10.1016/j.cbi.2014.01.012
  6. Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model vol.430, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2012.10.134
  7. Purpurogallin exerts anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells through the inactivation of the NF-κB and MAPK signaling pathways vol.32, pp.5, 2013, https://doi.org/10.3892/ijmm.2013.1478
  8. Curcumin ameliorates TNF-α-induced ICAM-1 expression and subsequent THP-1 adhesiveness via the induction of heme oxygenase-1 in the HaCaT cells vol.46, pp.8, 2013, https://doi.org/10.5483/BMBRep.2013.46.8.014
  9. PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model vol.47, pp.10, 2014, https://doi.org/10.5483/BMBRep.2014.47.10.286
  10. Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages vol.10, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2613
  11. Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson’s Disease Model vol.37, pp.3, 2014, https://doi.org/10.14348/molcells.2014.2314
  12. Novel 5-aminosalicylic derivatives as anti-inflammatories and myeloperoxidase inhibitors evaluated in silico, in vitro and ex vivo 2017, https://doi.org/10.1016/j.arabjc.2016.12.026
  13. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine vol.35, pp.15, 2014, https://doi.org/10.1016/j.biomaterials.2014.01.052
  14. Diallyl trisulfide exerts anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophages by suppressing the Toll-like receptor 4/nuclear factor-κB pathway vol.35, pp.2, 2015, https://doi.org/10.3892/ijmm.2014.2036
  15. Chemopreventive effect of a novel, selective TACE inhibitor on DMBA- and TPA-induced skin carcinogenesis vol.36, pp.4, 2014, https://doi.org/10.3109/08923973.2014.931421
  16. Sepiolite and palygorskite-underpinned regulation of mRNA expression of pro-inflammatory cytokines as determined by a murine inflammation model vol.137, 2017, https://doi.org/10.1016/j.clay.2016.12.006
  17. Transduced PEP-1-FK506BP ameliorates corneal injury in Botulinum toxin A-induced dry eye mouse model vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.272
  18. Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.384
  19. Anti-inflammatory and antioxidant effects of coumarins isolated fromFoeniculum vulgarein lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice vol.37, pp.3, 2015, https://doi.org/10.3109/08923973.2015.1038751