DOI QR코드

DOI QR Code

Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand

인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가

  • Xu, Qi (Department of Immunology, Xinjiang Medical University) ;
  • Kwak, Jong-Young (Department of Biochemistry, School of Medicine, Dong-A University)
  • Published : 2009.12.30

Abstract

CD11c and costimulatory molecules such as CD80 and CD86 express mainly in dendritic cells (DCs). In this study, we investigated the biologic effects of recombinant Fms-like tyrosine kinase-3 (Flt-3) ligand on the expression of DC surface markers, including CD11c in leukemia cell lines, such as KG-1, HL-60, NB4, and THP-1 cells. The expression of the Flt-3 receptor was found in NB4 and HL-60 cells, as well as KG-1 cells, but not in THP-1 cells. When KG-1 cells were cultured in a medium containing Flt-3 ligand or granulocyte macrophage-colony stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-$\alpha$, cell proliferation was inhibited and the expression levels of CD11c, major histocompatibility complex (MHC)-I, and MHC-II were increased in the cells. Flt-3 ligand also increased the expression level of CD11c on HL-60 and NB4 cells, but not on THP-1 cells. In comparison with CD11c expression, the expression level of CD11b on KG-1 cells, but not on NB4 and HL-60 cells, was slightly increased by Flt-3 ligand. Flt-3 ligand induced phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in KG-1 cells, and the up-regulation of CD11c expression by Flt-3 ligand in the cells was abrogated by PD98059, an inhibitor of MEK. The results suggest that Flt-3 ligand up-regulates DC surface markers on $CD34^+$ myelomonocytic KG-1 cells, as well as promyelocytic leukemia cells, and that the differentiation of the leukemia cells into DC-like cells by Flt-3 ligand is mediated by ERK-1/2 activity.

CD11c와 CD80 및 CD86과 같은 보조 수용체는 주로 수지상 세포에서 발현되는 세포 표지 인자이다. 본 연구에서는 KG-1, HL-60, NB4 및 THP-1 세포와 같은 여러 종류의 백혈병 세포를 이용하여 이들 세포에 재조합 Flt-3 리간드를 처리하였을 때 수지상 세포의 표면 인자인 CD11c의 발현에 어떠한 변화가 있는가를 조사하였다. KG-1 세포뿐만 아니라 NB4세포와 HL-60 세포에서도 Flt-3 수용체가 발현됨을 확인하였으나 THP-1 세포에서는 이들 수용체가 발현되지 않았다. KG-1 세포를 Flt-3 리간드나 granulocyte macrophage-colony stimulating factor (GM-CSF)와 tumor necrosis factor (TNF)-$\alpha$를 섞은 배양액에서 배양하였을 때 세포 증식은 억제되었으며 CD11c 발현은 현저히 증가되었다. 그러나 Flt-3 리간드를 처리한 KG-1세포에서는 GM-CSF와 TNF-$\alpha$를 처리한 세포에서와는 다르게 major histocompatibility complex (MHC)-I 및 MHC-II의 발현은 증가되지 않았다. Flt-3 리간드는 HL-60 세포와 NB4 세포의 CD11c 발현도 증가시켰으나 THP-1 세포에서는 아무런 영향이 없었다. CD11c의 발현과 비교하여 CD11b의 발현은 Flt-3 리간드에 의하여 KG-1 세포에서는 약하게 증가하였으나 NB4 세포와 HL-60 세포에서는 증가되지 않았다. KG-1 세포를 Flt-3 리간드로 처리하였을 때 extracellular signal-regulated kinase-1/2 (ERK-1/2)와 p38-mitogen-activated protein kinase (p38-MAPK)의 단백질 인산화가 증가되었으며 Flt-3 리간드에 의한 CD11c 발현의 증가는 MEK의 억제제인PD98059에 의하여 사라짐을 확인하였다. 본 연구 결과는 Flt-3 수용체 리간드의 처리에 의하여 $CD34^+$ myelomonocyte분화 단계인 KG-1 세포와 promyelocyte 분화 단계의 백혈병 세포에서 수지상 세포와 유사한 세포 형으로 분화된다는 것을 보였고 Flt-3 수용체 리간드에 의한 이들 백혈병 세포의 수지상 세포유사 세포로의 분화는 ERK-1/2의 활성화에 의하여 일어날 수 있음을 보여 준다.

Keywords

References

  1. Ardavin, c., G. Martinez del Hoyo, P. Martin, F. Anjuere, C. F. Arias, A R. Marin, S. Ruiz, V. Parrillas, and H. Hernandez. 2001. Origin and differentiation of dendritic cells. Trends in Immunol. 22, 691-700 https://doi.org/10.1016/S1471-4906(01)02059-2
  2. Banchereau, J. and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392, 245-252 https://doi.org/10.1038/32588
  3. Berges, c., C. Naujokat, S. Tinapp, H. Wieczorek, A Hoh, M. Sadeghi, G. Opelz, and V. Daniel. 2005. A cell line model for the differentiation of human dendritic cells. Biochem. Biophys. Res. Commun. 333, 896-907 https://doi.org/10.1016/j.bbrc.2005.05.171
  4. Caux, c., B. Vanbervliet, C. Massacrier, C. DezutterDambuyant, B. de Saint-Vis, C. Jacquet, K Yoneda, S. Imamura, D. Schmitt, and J. Banchereau. 1996. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFu. J. Exp. Med. 184, 695-706 https://doi.org/10.1084/jem.184.2.695
  5. Cuzzola, M., G. Mancuso, C. Beninati, C. Biondo, F. Genovese, F. Tomasello, T. H. Flo, T. Espevik, and G. Teti. 2000. Beta 2 integrins are involved in cytokine responses to whole Gram-positive bacteria. J. Immunol. 164, 5871-5876 https://doi.org/10.4049/jimmunol.164.11.5871
  6. D'Amico, A and 1. Wu. 2003. The early progenitors of mouse dendritic cells and plasmacytoid pre dendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293-303 https://doi.org/10.1084/jem.20030107
  7. Davis, T. A, A A Saini, P. J. Blair, B. 1. Levine, N. Craighead, D. M. Harlan, C. H. June, and K P. Lee. 1998. Phorbol esters induce differentiation of human CD34+ hemopoietic progenitors to dendritic cells: evidence for protein kinase C-mediated signaling. J. Immunol. 160, 3689-3697
  8. de la Rosa, G., N. Longo, J. 1. Rodriguez-Fernandez, A Puig-Kroger, A Pineda, A 1. Corbi, and P. Sanchez-Mateos. 2003. Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J. Leuk. BioI. 73, 639-649 https://doi.org/10.1189/jlb.1002516
  9. Drexler, H. G. 1996. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 10, 588-599
  10. Gabbianelli, M., E. Pelosi, E. Montesoro, M. Valtieri,l. Luchetti, P. Samoggia, l. Vitelli, T. Barberi, U. Testa, and S. Lyman. 1995. Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood 86, 1661-1670
  11. Gilliet, M., A Boonstra, C. Paturel, S. Antonenko, X. 1. Xu, G. Trinchieri, A O'Garra, and Y. J. Liu. 2002. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/ macrophage colony-stimulating factor. J. Exp. Med. 195, 953-958 https://doi.org/10.1084/jem.20020045
  12. Gilliland, D. G. and J. D. Griffin. 2002. The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532-1542 https://doi.org/10.1182/blood-2002-02-0492
  13. Harada, S., T. Kimura, H. Fujiki, H. Nakagawa, Y. Ueda, T. Itoh, H. Yamagishi, and Y. Sonoda. 2007. Flt3 ligand promotes myeloid dendritic cell differentiation of human hematopoietic progenitor cells: possible application for cancer immunotherapy. Int. J. Oncol. 30, 1461-1468
  14. Hartgers, F. c., C. G. Figdor, and G. J. Adema. 2000. Towards a molecular understanding of dendritic cell immunobiology. Immunol. Today 21, 542-545 https://doi.org/10.1016/S0167-5699(00)01736-9
  15. Hogg, N. and C. Berlin. 1995. Structure and function of adhesion receptors in leukocyte trafficking. Immunol. Today 16, 327-330 https://doi.org/10.1016/0167-5699(95)80147-2
  16. Lyman, S. D. and S. E. Jacobsen. 1998. c-kit ligand and Flt3 ligand: stem/ progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101-1134
  17. Lyman, S. D., 1. James, T. Vanden Bos, P. de Vries, K Brasel, B. Gliniak, 1. T. Hollingsworth, K S. Picha, H. J. McKenna, and R. R. Splett. 1993. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157-1167 https://doi.org/10.1016/0092-8674(93)90325-K
  18. Mackarehtschian, K, J. D. Hardin, K A Moore, S. Boast, S. P. Goff, and I. R. Lemischka. 1995. Targeted disruption of the flk2/ flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147-161 https://doi.org/10.1016/1074-7613(95)90167-1
  19. Matthews, W., C. T. Jordan, G. W. Wiegand, D. Pard oIl, and I. R. Lemischka. 1991. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65, 1143-1152 https://doi.org/10.1016/0092-8674(91)90010-V
  20. Matthews, W., C. T. Jordan, M. Gavin, N. A Jenkins, N. G. Copeland, and I. R. Lemischka. 1991. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc. Natl. Acad. Sci. USA 88, 9026-9030 https://doi.org/10.1073/pnas.88.20.9026
  21. McKenna, H. J., K 1. Stocking, R. E. Miller, K Brasel, T. De Smedt, E. Maraskovsky, C. R. Maliszewski, D. H. Lynch, J. Smith, B. Pulendran, E. R. Roux, M. Teepe, S. D. Lyman, and J. J. Peschon. 2000. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489-3497
  22. Ribas, A, 1. H. Butterfield, B. Hu, V. B. Dissette, A Y. Chen, A Koh, S. N. Amarnani, J. A Glaspy, W. H. McBride, and J. S. Economou. 2000. Generation of T-cell immunity to a murine melanoma using MART-I-engineered dendritic cells. J. Immunother. 23, 59-66 https://doi.org/10.1097/00002371-200001000-00008
  23. Romani, N., S. Gruner, D. Brang, E. Kampgen, A Lenz, B. Trockenbacher, G. Konwalinka, P. O. Fritsch, R. M. Steinman, and G. Schuler. 1994. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83-93 https://doi.org/10.1084/jem.180.1.83
  24. Rondelli, D., R. M. Lemoli, M. Ratta, M. Fogli, F. Re, A. Curti, M. Arpinati, and S. Tura. 1999. Rapid induction of CD40 on a subset of granulocyte colony-stimulating factor-mobilized CD34(+) blood cells identifies myeloid committed progenitors and permits selection of nonimmunogenic CD40(-) progenitor cells. Blood 94, 2293-2300
  25. Santiago-Schwarz, F., E. Belilos, B. Diamond, and S. E. Carsons. 1992. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J. Leuk. BioI. 52, 274-281
  26. SmalL D., M. Levenstein, E. Kim, C. Carow, S. Amin, P. Rockwell, 1. Witte, C. Burrow, M. Z. Ratajczak, and A. M. Gewirtz. 1994. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc. Natl. Acad. Sci. USA 91, 459-463 https://doi.org/10.1073/pnas.91.2.459
  27. St Louis, D. c., J. B. Woodcock, G. Franzoso, P. J. Blair, 1. M. Carlson, M. Murillo, M. R. Wells, A. J. Williams, D. S. Smoot, S. KaushaL J. 1. Grimes, D. M. Harlan, J. P. Chute, C. H. June, U. Siebenlist, and K. P. Lee. 1999. Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. J. Immunol. 162, 3237-3248
  28. Verbovetski, C H. Bychkov, U. Trahtemberg, I. Shapira, M. Hareuveni, O. Ben-TaL I. Kutikov, O. GilL and D. Mevorach. 2002. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J. Exp. Med. 196, 1553-1561 https://doi.org/10.1084/jem.20020263
  29. Young, J. W., P. Szabolcs, and M. A. Moore. 1995. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J. Exp. Med. 182, 1111-1119 https://doi.org/10.1084/jem.182.4.1111
  30. Zhang, S. and H. E. Broxmeyer. 1999. p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells. Biochem. Biophys. Res. Commun. 254, 440-445 https://doi.org/10.1006/bbrc.1998.9959