• Title/Summary/Keyword: Mitochondrial sHSP

Search Result 9, Processing Time 0.024 seconds

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates

  • Kim, Keun-Pill;Yu, Ji-Hee;Park, Soo-Min;Koo, Hyun-Jo;Hong, Choo-Bong
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.816-820
    • /
    • 2011
  • There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the $H_6NtHSP24.6$ protein was found to form a dimer in solution. The in vitro functional analysis of $H_6NtHSP24.6$ using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of $H_6NtHSP24.6$, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.

Isolation and Characterization of a Rice Mitochondrial Small Heat Shock Protein Gene

  • Kim, Do-Hyun;Alam, Iftekhar;Lee, Dong-Gi;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.285-290
    • /
    • 2020
  • To understand the role of small heat shock protein (sHSPs) in rice plant response to various stresses such as the heat and oxidative stresses, a cDNA encoding a 24.1 kDa mitochondrial small HSP (Oshsp24.1) was isolated from rice by rapid amplification of cDNA ends (RACE) PCR. The deduced amino acid sequence shows very high similarity with other plant small HSPs. DNA gel blot analysis suggests that the rice genome contains more than one copy of Oshsp24.1. High level of expression of Oshsp24.1 transcript was observed in rice seedlings in response to heat, methyl viologen, hydrogen peroxide, ozone, salt and heavy metal stresses. Recombinant OsHSP24.1 protein was produced in E. coli cells for biochemical assay. The protein formed oligomeric complex when incubated with Sulfo-EGS (ethylene glycol bis (succinimidyl succinate)). Our results shows that Oshsp24.1 has an important role in abiotic stress response and have potential for developing stress-tolerant plants.

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection (Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석)

  • Lee, Yun Yeong;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae is the leading cause of community-acquired pneumonia throughout the world. The bacteria invade through lung tissue and cause sepsis, shock, and serious sequelae, including rheumatic fever and acute glomerulonephritis. However, the molecular mechanism associated with pneumonia's penetration of lung tissue and invasion of the blood stream are still unclear. We attempted to investigate the host cell response at protein levels to S. pneumoniae D39 invasion using human lung cancer epithelial cells, A549. Streptococcus pneumoniae D39 began to change the morphology of A549 cells to become round with filopodia at 2 hours post-infection. A549 cell proteins obtained at each infection time point were separated by SDS-PAGE and analyzed using MALDI-TOF. We identified several endoplasmic reticulum (ER) resident proteins such as Grp94 and Grp78 and mitochondrial proteins such as ATP synthase and Hsp60 that increased after S. pneumoniae D39 infection. Cytosolic Hsc70 and Hsp90 were, however, identified to decrease. These proteins were also confirmed by Western blot analysis. The identified ER resident proteins were known to be induced during ER stress signaling. These/ data, therefore, suggest that S. pneumoniae D39 infection may induce ER stress.

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences (Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences)

  • Jeong, Jae Hun;Kim, Eun Gyeong;No, Jeong Hye
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.37-37
    • /
    • 1996
  • The internal regions of nuclear small subunit rRNA from 6 plaeurotus species and 5 Pleurotus ostreatus strains were amplified by PCR and sequenced. The DNA sequences of 8 Pleurotus strains (P. ostreatus NFFA2, NFFA4501, NFFA4001, KFFA4001, KFCC11635, P florida, P. florida, P. sajor-cuju, P. pulmonarius, and P. spodoleucus) were idential, but P. cornucopiae differed from them in two bases out of 605 bases. However, p[hylogenetic analysis of the sequences by DNA-distance matrix and UPGMA methods showed that P. ostreatus NFFA2m1 and NFFA2m2, known as mutants of P. ostreatus NFFA2, belonged to anther group of Basidiomycotina, which is close to the genus Auricularia. The difference of the SSU rDNA sequences of P. cornucopiae from other Pleurotus species tested corresponds to the difference of mitochondrial plasmid type present in Pleurotus species as observed by Kim et al. (1993, Korean J. Microbiol. 31, 141-147).ishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.