References
- Boston, R.S., Viitanen, P.V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Molecular Biology. 32:191-222. https://doi.org/10.1007/BF00039383
- Chen, Q., Lauzon, L., DeRocher, A. and Vierling, E. 1990. Accumulation, stability and localization of a major chloroplast heat shock protein. Journal of Cell Biology. 110:1873-1883. https://doi.org/10.1083/jcb.110.6.1873
- Debel, K., Eberhard, D. and Kloppstech, K. 1995. Light stress: Its effect on the expression of small organellar heat-shock proteins in plants. Clues to their function? In Proceedings of the Second STRESSNET Conference, Salsomaggiore, Italy (R.A. Leight and M.M.A. Mechteld Blake-Kalff (Eds.)). Brussels: EC DG VI, pp. 29-34.
- Downs, C.A. and Heckathorn, S.A. 1998. The mitochondrial small heat-shock protein protects NADH: Ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Letters. 430:246-250. https://doi.org/10.1016/S0014-5793(98)00669-3
- Ehrnsperger, M., Graber, S., Gaestel, M. and Buchner, J. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO Journal. 16:221-229. https://doi.org/10.1093/emboj/16.2.221
- Giese, K.C. and Vierling, E. 2002. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. Journal of Biological Chemistry. 277:46310-46318. https://doi.org/10.1074/jbc.M208926200
- Hamilton, E.W. and Heckathorn, S.A. 2001. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology. pp. 1266-1274.
- Haslbeck, M. and Vierling, E. 2015. A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology. 427:1537-1548. https://doi.org/10.1016/j.jmb.2015.02.002
- Jaenicke, R. and Rudolph, R. 1989. Folding proteins, in protein structure-AA practical approach (T.E. Creighton (Ed.)), IRL/Oxford, UK, pp. 191-223.
- LaFayette, P.R., Nagao, R.T., O'Grady, K., Vierling, E. and Key, J.L. 1996. Molecular characterization of cDNA encoding low molecular-weight heat shock proteins of soybean. Plant Molecular Biology. 30:159-169. https://doi.org/10.1007/BF00017810
- Lee K.W., Kim, K.H., Kim, Y.G., Lee, B.H. and Lee, S.H. 2012. Identification of MsHsp23 gene using annealing control primer system. Acta Physiologiae Plantarum. 34:807-811. https://doi.org/10.1007/s11738-011-0853-2
- Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Bahk, J.D., Lee, I.J. and Lee, B.H. 2007. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics. 7:3369-3383. https://doi.org/10.1002/pmic.200700266
- Lee, K.W., Cha, J.Y., Kim, K.H., Kim, Y.G., Lee, B.H. and Lee S.H. 2012. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnology Letters. 34:167-174. https://doi.org/10.1007/s10529-011-0750-1
- Lenne, C., Block, M., Garin, J. and Douce, R. 1995. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochemistry Journal. 311:805-813. https://doi.org/10.1042/bj3110805
- Lindquist, S. and Craig, E.A. 1988. The heat shock proteins. Annual Review of Genetics. 22:631-677. https://doi.org/10.1146/annurev.ge.22.120188.003215
- Lund, A.A., Blum, P.H., Bhattramakki, D. and Elthon, T.E. 1998. Heat-stress response of maize mitochondria. Plant Physiology. 116:1097-1110. https://doi.org/10.1104/pp.116.3.1097
- Mogk, A., Schlieker, C., Friedrich, K.L., Schonfeld, H.J., Vierling, E. and Bukau, B. 2003. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. Journal of Biological Chemistry. 278:31033-31042. https://doi.org/10.1074/jbc.M303587200
- Narberhaus, F. 2002. Alpha-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews. 66:64-93. https://doi.org/10.1128/MMBR.66.1.64-93.2002
- Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012:1-26. doi: 10.1155/2012/217037
- Vierling, E. 1991. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 42:579-620. https://doi.org/10.1146/annurev.pp.42.060191.003051
- Wang, D. and Luthe, D.S. 2003. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiology. 133:319-327. https://doi.org/10.1104/pp.102.018309
- Waters, E. 1995. The molecular evolution of the small heat shock proteins in plants. Genetics. 141:785-795. https://doi.org/10.1093/genetics/141.2.785
- Waters, E.R. and Vierling, E. 2020. Plant small heat shock proteins-evolutionary and functional diversity. New Phytologist. 227:24-37. https://doi.org/10.1111/nph.16536
- Waters, E.R., Lee, G.J. and Vierling, E. 1996. Evolution, structure and function of the small heat shock proteins in plants. Journal Experimental Botany. 47:325-338. https://doi.org/10.1093/jxb/47.3.325
- Willett, D.A., Basha, E. and Vierling, E. 1996. Nucleotide sequence of a cDNA encoding a mitochondrion-located small HSP from Arabidopsis thaliana: AtHsp23.6 (PGR 96-117). Plant Physiology. 112:1399.