DOI QR코드

DOI QR Code

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih (Department of Bioengineering, Hanyang University) ;
  • Ban, Hongseok (Department of Bioengineering, Hanyang University) ;
  • Kim, Young-Hee (Department of Bioengineering, Hanyang University) ;
  • Lee, Sang-Kyung (Department of Bioengineering, Hanyang University)
  • Received : 2008.11.18
  • Accepted : 2009.03.30
  • Published : 2009.05.31

Abstract

Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Korea Research Foundation

References

  1. Arakawa, M., Yasutake, M., Miyamoto, M., Takano, T., Asoh, S., and Ohta, S. (2007). Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci.80, 2076-2084 https://doi.org/10.1016/j.lfs.2007.03.012
  2. Arya, R., Mallik, M., and Lakhotia, S.C. (2007). Heat shock genesintegrating cell survival and death. J. Biosci.32, 595-610 https://doi.org/10.1007/s12038-007-0059-3
  3. Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2, 420-430 https://doi.org/10.1038/nrc821
  4. Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G., Solary, E.I=et al. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645-652 https://doi.org/10.1038/35023595
  5. Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715-11720 https://doi.org/10.1073/pnas.95.20.11715
  6. Charette, S.J., Lavoie, J.N., Lambert, H., and Landry, J. (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 20, 7602-7612 https://doi.org/10.1128/MCB.20.20.7602-7612.2000
  7. Chauhan, A., Tikoo, A., Kapur, A.K., and Singh, M. (2007). The taming of the cell penetrating domain of the HIV Tat: myths and realities. J. Control Release 117, 148-162 https://doi.org/10.1016/j.jconrel.2006.10.031
  8. Clark, J.I., and Muchowski, P.J. (2000). Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10, 52-59 https://doi.org/10.1016/S0959-440X(99)00048-2
  9. Columbaro, M., Mattioli, E., Lattanzi, G., Rutigliano, C., Ognibene, A., Maraldi, N.M., and Squarzoni, S. (2001). Staurosporine treatment and serum starvation promote the cleavage of emerin in cultured mouse myoblasts: involvement of a caspase-dependent mechanism. FEBS Lett. 509, 423-429 https://doi.org/10.1016/S0014-5793(01)03203-3
  10. Concannon, C.G., Orrenius, S., and Samali, A. (2001). Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Exp.9, 195-201 https://doi.org/10.3727/000000001783992605
  11. Concannon, C.G., Gorman, A.M., and Samali, A. (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61-70 https://doi.org/10.1023/A:1021601103096
  12. Delogu, G., Signore, M., Mechelli, A., and Famularo, G. (2002). Heat shock proteins and their role in heart injury. Curr. Opin. Crit. Care 8, 411-416 https://doi.org/10.1097/00075198-200210000-00007
  13. Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450
  14. Ehrnsperger, M., Graber, S., Gaestel, M., and Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221-229 https://doi.org/10.1093/emboj/16.2.221
  15. Ferns, G., Shams, S., and Shafi, S. (2006). Heat shock protein 27: its potential role in vascular disease. Int. J. Exp. Pathol.87, 253-274 https://doi.org/10.1111/j.1365-2613.2006.00484.x
  16. Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. (2003). Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278, 34141-34149
  17. Futaki, S., Goto, S., and Sugiura, Y. (2003). Membrane permeability commonly shared among arginine-rich peptides. J. Mol. Recognit 16, 260-264 https://doi.org/10.1002/jmr.635
  18. Garrido, C. (2002). Size matters: of the small HSP27 and its large oligomers. Cell Death Differ. 9, 483-485 https://doi.org/10.1038/sj.cdd.4401005
  19. Garrido, C., Bruey, J.M., Fromentin, A., Hammann, A., Arrigo, A.P., and Solary, E. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13, 2061-2070 https://doi.org/10.1096/fasebj.13.14.2061
  20. Gewies, A. (2003). Introduction to apoptosis. ApoReview, 1-26
  21. Gustafsson, A.B., Sayen, M.R., Williams, S.D., Crow, M.T., and Gottlieb, R.A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106, 735-739 https://doi.org/10.1161/01.CIR.0000023943.50821.F7
  22. Hotchkiss, R.S., McConnell, K.W., Bullok, K., Davis, C.G., Chang, K.C., Schwulst, S.J., Dunne, J.C., Dietz, G.P., Bahr, M., McDunn, J.E.I= et al. (2006). TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol 176, 5471-5477 https://doi.org/10.4049/jimmunol.176.9.5471
  23. Jung, J.Y., and Kim, W.J. (2004). Involvement of mitochondrial- and Fas-mediated dual mechanism in $CoCl_2$-induced apoptosis of rat PC12 cells. Neurosci. Lett 371, 85-90 https://doi.org/10.1016/j.neulet.2004.06.069
  24. Jung, J.Y., Mo, H.C., Yang, K.H., Jeong, Y.J., Yoo, H.G., Choi, N.K., Oh, W.M., Oh, H.K., Kim, S.H., Lee, J.H.I=et al. (2007). Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 80, 1355-1363 https://doi.org/10.1016/j.lfs.2006.11.033
  25. Kim, D.T., Mitchell, D.J., Brockstedt, D.G., Fong, L., Nolan, G.P., Fathman, C.G., Engleman, E.G., and Rothbard, J.B. (1997). Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J. Immunol. 159, 1666-1668
  26. Kim, T.G., Befus, N., and Langridge, W.H. (2004). Co-immunization with an HIV-1 Tat transduction peptide-rotavirus enterotoxin fusion protein stimulates a Th1 mucosal immune response in mice. Vaccine 22, 431-438 https://doi.org/10.1016/j.vaccine.2003.07.015
  27. Kim, S.G., Park, M.Y., Kim, C.H., Sohn, H.J., Kim, H.S., Park, J.S., Kim, H.J., Oh, S.T., and Kim, T.G. (2008). Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 26, 6433-6440 https://doi.org/10.1016/j.vaccine.2008.08.072
  28. Kumar, P., Krishna, V.D., Sulochana, P., Nirmala, G., Haridattatreya, M., and Satchidanandam, V. (2004). Cell-mediated immune responses in healthy children with a history of subclinical infection with Japanese encephalitis virus: analysis of CD4+ and CD8+ T cell target specificities by intracellular delivery of viral proteins using the human immunodeficiency virus Tat protein transduction domain. J. Gen. Virol. 85, 471-482 https://doi.org/10.1099/vir.0.19531-0
  29. Kumar, P., Wu, H., McBride, J.L., Jung, K.E., Kim, M.H., Davidson, B.L., Lee, S.K., Shankar, P., and Manjunath, N. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39-43 https://doi.org/10.1038/nature05901
  30. Kwon, J.H., Kim, J.B., Lee, K.H., Kang, S.M., Chung, N., Jang, Y., and Chung, J.H. (2007). Protective effect of heat shock protein 27 using protein transduction domain-mediated delivery on ischemia/reperfusion heart injury. Biochem. Biophys. Res. Commun. 363, 399-404 https://doi.org/10.1016/j.bbrc.2007.09.001
  31. Latchman, D.S. (2005). HSP27 and cell survival in neurones. Int. J. Hyperthermia 21, 393-402 https://doi.org/10.1080/02656730400023664
  32. Lecoq, A., Moine, G., Bellanger, L., Drevet, P., Thai, R., Lajeunesse, E., Menez, A., and Leonetti, M. (2008). Increasing the humoral immunogenic properties of the HIV-1 Tat protein using a ligandstabilizing strategy. Vaccine 26, 2615-2626 https://doi.org/10.1016/j.vaccine.2008.02.057
  33. Li, H., Zhu, H., Xu, C.J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 https://doi.org/10.1016/S0092-8674(00)81590-1
  34. Li, Z.X., Ouyang, K.Q., Jiang, X., Wang, D., and Hu, Y. (2009). Curcumin induces apoptosis and inhibits growth of human Burkitt's lymphoma in xenograft mouse model. Mol. Cells 27, 283-289 https://doi.org/10.1007/s10059-009-0036-9
  35. Mai, J.C., Shen, H., Watkins, S.C., Cheng, T., and Robbins, P.D. (2002). Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 277, 30208-30218 https://doi.org/10.1074/jbc.M204202200
  36. Martin, J.L., Mestril, R., Hilal-Dandan, R., Brunton, L.L., and Dillmann, W.H. (1997). Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96, 4343-4348 https://doi.org/10.1161/01.CIR.96.12.4343
  37. Mayorga, M., Bahi, N., Ballester, M., Comella, J.X., and Sanchis, D. (2004). Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J. Biol. Chem. 279, 34882-34889 https://doi.org/10.1074/jbc.M404616200
  38. Pandey, P., Farber, R., Nakazawa, A., Kumar, S., Bharti, A., Nalin, C., Weichselbaum, R., Kufe, D., and Kharbanda, S. (2000). Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19, 1975-1981 https://doi.org/10.1038/sj.onc.1203531
  39. Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., and Arrigo, A.P. (2002). Hsp27 as a negative regulator of cytochrome C release. Mol. Cell Biol. 22, 816-834 https://doi.org/10.1128/MCB.22.3.816-834.2002
  40. Prochiantz, A. (2000). Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  41. Radford, N.B., Fina, M., Benjamin, I.J., Moreadith, R.W., Graves, K.H., Zhao, P., Gavva, S., Wiethoff, A., Sherry, A.D., Malloy, C.R.I= et al. (1996). Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 2339-2342 https://doi.org/10.1073/pnas.93.6.2339
  42. Richard, J.P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L.V. (2005). Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280, 15300-15306 https://doi.org/10.1074/jbc.M401604200
  43. Sartorius, U., Schmitz, I., and Krammer, P.H. (2001). Molecular mechanisms of death-receptor-mediated apoptosis. Chembiochem 2, 20-29 https://doi.org/10.1002/1439-7633(20010105)2:1<20::AID-CBIC20>3.0.CO;2-X
  44. Schwarze, S.R., Ho, A., Vocero-Akbani, A., and Dowdy, S.F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
  45. Shaw, P.A., Catchpole, I.R., Goddard, C.A., and Colledge, W.H. (2008). Comparison of protein transduction domains in mediating cell delivery of a secreted CRE protein. Biochemistry 47, 1157-1166 https://doi.org/10.1021/bi701542p
  46. Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281-292 https://doi.org/10.1083/jcb.144.2.281
  47. Trost, S.U., Omens, J.H., Karlon, W.J., Meyer, M., Mestril, R., Covell, J.W., and Dillmann, W.H. (1998). Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J. Clin. Invest. 101, 855-862 https://doi.org/10.1172/JCI265
  48. Wadia, J.S., and Dowdy, S.F. (2003). Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4, 97-104 https://doi.org/10.2174/1389203033487289
  49. Wadia, J.S., and Dowdy, S.F. (2005). Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 57, 579-596 https://doi.org/10.1016/j.addr.2004.10.005
  50. Whitlock, N.A., Lindsey, K., Agarwal, N., Crosson, C.E., and Ma, J.X. (2005). Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 46, 1085-1091 https://doi.org/10.1167/iovs.04-0042
  51. Yu, W.R., Liu, T., Fehlings, T.K., and Fehlings, M.G. (2009). Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur. J. Neurosci. 29, 114-1131 https://doi.org/10.1111/j.1460-9568.2008.06555.x
  52. Yue, T.L., Wang, C., Romanic, A.M., Kikly, K., Keller, P., DeWolf, W.E., Jr., Hart, T.K., Thomas, H.C., Storer, B., Gu, J.L., et al. (1998). Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. J. Mol. Cell. Cardiol. 30, 495-507 https://doi.org/10.1006/jmcc.1997.0614
  53. Zhao, M., and Weissleder, R. (2004). Intracellular cargo delivery using tat peptide and derivatives. Med. Res. Rev. 24, 1-12 https://doi.org/10.1002/med.10056
  54. Zou, W., Yan, M., Xu, W., Huo, H., Sun, L., Zheng, Z., and Liu, X. (2001). Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J. Neurosci. Res. 64, 646-653 https://doi.org/10.1002/jnr.1118

Cited by

  1. Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction vol.137, pp.3, 2009, https://doi.org/10.1016/j.jconrel.2009.04.008
  2. Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins vol.92, pp.8, 2009, https://doi.org/10.1016/j.biochi.2010.04.005
  3. Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein fromArtemia franciscana vol.88, pp.6, 2009, https://doi.org/10.1139/o10-143
  4. Injectable biodegradable hydrogels: progress and challenges vol.1, pp.40, 2013, https://doi.org/10.1039/c3tb20940g
  5. Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model vol.21, pp.9, 2009, https://doi.org/10.3109/1061186x.2013.829072
  6. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella vol.5, pp.2, 2015, https://doi.org/10.1002/ece3.1380
  7. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations vol.39, pp.9, 2009, https://doi.org/10.1007/s12272-016-0786-9
  8. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells vol.6, pp.None, 2009, https://doi.org/10.1038/srep30314
  9. Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction vol.17, pp.6, 2009, https://doi.org/10.1021/acs.molpharmaceut.0c00192
  10. Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction vol.17, pp.6, 2009, https://doi.org/10.1021/acs.molpharmaceut.0c00192