Acknowledgement
Supported by : Ministry of Science and Technology, Korea Research Foundation
References
- Arakawa, M., Yasutake, M., Miyamoto, M., Takano, T., Asoh, S., and Ohta, S. (2007). Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci.80, 2076-2084 https://doi.org/10.1016/j.lfs.2007.03.012
- Arya, R., Mallik, M., and Lakhotia, S.C. (2007). Heat shock genesintegrating cell survival and death. J. Biosci.32, 595-610 https://doi.org/10.1007/s12038-007-0059-3
- Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2, 420-430 https://doi.org/10.1038/nrc821
- Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G., Solary, E.I=et al. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645-652 https://doi.org/10.1038/35023595
- Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715-11720 https://doi.org/10.1073/pnas.95.20.11715
- Charette, S.J., Lavoie, J.N., Lambert, H., and Landry, J. (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 20, 7602-7612 https://doi.org/10.1128/MCB.20.20.7602-7612.2000
- Chauhan, A., Tikoo, A., Kapur, A.K., and Singh, M. (2007). The taming of the cell penetrating domain of the HIV Tat: myths and realities. J. Control Release 117, 148-162 https://doi.org/10.1016/j.jconrel.2006.10.031
- Clark, J.I., and Muchowski, P.J. (2000). Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10, 52-59 https://doi.org/10.1016/S0959-440X(99)00048-2
- Columbaro, M., Mattioli, E., Lattanzi, G., Rutigliano, C., Ognibene, A., Maraldi, N.M., and Squarzoni, S. (2001). Staurosporine treatment and serum starvation promote the cleavage of emerin in cultured mouse myoblasts: involvement of a caspase-dependent mechanism. FEBS Lett. 509, 423-429 https://doi.org/10.1016/S0014-5793(01)03203-3
- Concannon, C.G., Orrenius, S., and Samali, A. (2001). Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Exp.9, 195-201 https://doi.org/10.3727/000000001783992605
- Concannon, C.G., Gorman, A.M., and Samali, A. (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61-70 https://doi.org/10.1023/A:1021601103096
- Delogu, G., Signore, M., Mechelli, A., and Famularo, G. (2002). Heat shock proteins and their role in heart injury. Curr. Opin. Crit. Care 8, 411-416 https://doi.org/10.1097/00075198-200210000-00007
- Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450
- Ehrnsperger, M., Graber, S., Gaestel, M., and Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221-229 https://doi.org/10.1093/emboj/16.2.221
- Ferns, G., Shams, S., and Shafi, S. (2006). Heat shock protein 27: its potential role in vascular disease. Int. J. Exp. Pathol.87, 253-274 https://doi.org/10.1111/j.1365-2613.2006.00484.x
- Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. (2003). Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278, 34141-34149
- Futaki, S., Goto, S., and Sugiura, Y. (2003). Membrane permeability commonly shared among arginine-rich peptides. J. Mol. Recognit 16, 260-264 https://doi.org/10.1002/jmr.635
- Garrido, C. (2002). Size matters: of the small HSP27 and its large oligomers. Cell Death Differ. 9, 483-485 https://doi.org/10.1038/sj.cdd.4401005
- Garrido, C., Bruey, J.M., Fromentin, A., Hammann, A., Arrigo, A.P., and Solary, E. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13, 2061-2070 https://doi.org/10.1096/fasebj.13.14.2061
- Gewies, A. (2003). Introduction to apoptosis. ApoReview, 1-26
- Gustafsson, A.B., Sayen, M.R., Williams, S.D., Crow, M.T., and Gottlieb, R.A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106, 735-739 https://doi.org/10.1161/01.CIR.0000023943.50821.F7
- Hotchkiss, R.S., McConnell, K.W., Bullok, K., Davis, C.G., Chang, K.C., Schwulst, S.J., Dunne, J.C., Dietz, G.P., Bahr, M., McDunn, J.E.I= et al. (2006). TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol 176, 5471-5477 https://doi.org/10.4049/jimmunol.176.9.5471
-
Jung, J.Y., and Kim, W.J. (2004). Involvement of mitochondrial- and Fas-mediated dual mechanism in
$CoCl_2$ -induced apoptosis of rat PC12 cells. Neurosci. Lett 371, 85-90 https://doi.org/10.1016/j.neulet.2004.06.069 - Jung, J.Y., Mo, H.C., Yang, K.H., Jeong, Y.J., Yoo, H.G., Choi, N.K., Oh, W.M., Oh, H.K., Kim, S.H., Lee, J.H.I=et al. (2007). Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 80, 1355-1363 https://doi.org/10.1016/j.lfs.2006.11.033
- Kim, D.T., Mitchell, D.J., Brockstedt, D.G., Fong, L., Nolan, G.P., Fathman, C.G., Engleman, E.G., and Rothbard, J.B. (1997). Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J. Immunol. 159, 1666-1668
- Kim, T.G., Befus, N., and Langridge, W.H. (2004). Co-immunization with an HIV-1 Tat transduction peptide-rotavirus enterotoxin fusion protein stimulates a Th1 mucosal immune response in mice. Vaccine 22, 431-438 https://doi.org/10.1016/j.vaccine.2003.07.015
- Kim, S.G., Park, M.Y., Kim, C.H., Sohn, H.J., Kim, H.S., Park, J.S., Kim, H.J., Oh, S.T., and Kim, T.G. (2008). Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 26, 6433-6440 https://doi.org/10.1016/j.vaccine.2008.08.072
- Kumar, P., Krishna, V.D., Sulochana, P., Nirmala, G., Haridattatreya, M., and Satchidanandam, V. (2004). Cell-mediated immune responses in healthy children with a history of subclinical infection with Japanese encephalitis virus: analysis of CD4+ and CD8+ T cell target specificities by intracellular delivery of viral proteins using the human immunodeficiency virus Tat protein transduction domain. J. Gen. Virol. 85, 471-482 https://doi.org/10.1099/vir.0.19531-0
- Kumar, P., Wu, H., McBride, J.L., Jung, K.E., Kim, M.H., Davidson, B.L., Lee, S.K., Shankar, P., and Manjunath, N. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39-43 https://doi.org/10.1038/nature05901
- Kwon, J.H., Kim, J.B., Lee, K.H., Kang, S.M., Chung, N., Jang, Y., and Chung, J.H. (2007). Protective effect of heat shock protein 27 using protein transduction domain-mediated delivery on ischemia/reperfusion heart injury. Biochem. Biophys. Res. Commun. 363, 399-404 https://doi.org/10.1016/j.bbrc.2007.09.001
- Latchman, D.S. (2005). HSP27 and cell survival in neurones. Int. J. Hyperthermia 21, 393-402 https://doi.org/10.1080/02656730400023664
- Lecoq, A., Moine, G., Bellanger, L., Drevet, P., Thai, R., Lajeunesse, E., Menez, A., and Leonetti, M. (2008). Increasing the humoral immunogenic properties of the HIV-1 Tat protein using a ligandstabilizing strategy. Vaccine 26, 2615-2626 https://doi.org/10.1016/j.vaccine.2008.02.057
- Li, H., Zhu, H., Xu, C.J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 https://doi.org/10.1016/S0092-8674(00)81590-1
- Li, Z.X., Ouyang, K.Q., Jiang, X., Wang, D., and Hu, Y. (2009). Curcumin induces apoptosis and inhibits growth of human Burkitt's lymphoma in xenograft mouse model. Mol. Cells 27, 283-289 https://doi.org/10.1007/s10059-009-0036-9
- Mai, J.C., Shen, H., Watkins, S.C., Cheng, T., and Robbins, P.D. (2002). Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 277, 30208-30218 https://doi.org/10.1074/jbc.M204202200
- Martin, J.L., Mestril, R., Hilal-Dandan, R., Brunton, L.L., and Dillmann, W.H. (1997). Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96, 4343-4348 https://doi.org/10.1161/01.CIR.96.12.4343
- Mayorga, M., Bahi, N., Ballester, M., Comella, J.X., and Sanchis, D. (2004). Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J. Biol. Chem. 279, 34882-34889 https://doi.org/10.1074/jbc.M404616200
- Pandey, P., Farber, R., Nakazawa, A., Kumar, S., Bharti, A., Nalin, C., Weichselbaum, R., Kufe, D., and Kharbanda, S. (2000). Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19, 1975-1981 https://doi.org/10.1038/sj.onc.1203531
- Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., and Arrigo, A.P. (2002). Hsp27 as a negative regulator of cytochrome C release. Mol. Cell Biol. 22, 816-834 https://doi.org/10.1128/MCB.22.3.816-834.2002
- Prochiantz, A. (2000). Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
- Radford, N.B., Fina, M., Benjamin, I.J., Moreadith, R.W., Graves, K.H., Zhao, P., Gavva, S., Wiethoff, A., Sherry, A.D., Malloy, C.R.I= et al. (1996). Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 2339-2342 https://doi.org/10.1073/pnas.93.6.2339
- Richard, J.P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L.V. (2005). Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280, 15300-15306 https://doi.org/10.1074/jbc.M401604200
- Sartorius, U., Schmitz, I., and Krammer, P.H. (2001). Molecular mechanisms of death-receptor-mediated apoptosis. Chembiochem 2, 20-29 https://doi.org/10.1002/1439-7633(20010105)2:1<20::AID-CBIC20>3.0.CO;2-X
- Schwarze, S.R., Ho, A., Vocero-Akbani, A., and Dowdy, S.F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
- Shaw, P.A., Catchpole, I.R., Goddard, C.A., and Colledge, W.H. (2008). Comparison of protein transduction domains in mediating cell delivery of a secreted CRE protein. Biochemistry 47, 1157-1166 https://doi.org/10.1021/bi701542p
- Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281-292 https://doi.org/10.1083/jcb.144.2.281
- Trost, S.U., Omens, J.H., Karlon, W.J., Meyer, M., Mestril, R., Covell, J.W., and Dillmann, W.H. (1998). Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J. Clin. Invest. 101, 855-862 https://doi.org/10.1172/JCI265
- Wadia, J.S., and Dowdy, S.F. (2003). Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4, 97-104 https://doi.org/10.2174/1389203033487289
- Wadia, J.S., and Dowdy, S.F. (2005). Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 57, 579-596 https://doi.org/10.1016/j.addr.2004.10.005
- Whitlock, N.A., Lindsey, K., Agarwal, N., Crosson, C.E., and Ma, J.X. (2005). Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 46, 1085-1091 https://doi.org/10.1167/iovs.04-0042
- Yu, W.R., Liu, T., Fehlings, T.K., and Fehlings, M.G. (2009). Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur. J. Neurosci. 29, 114-1131 https://doi.org/10.1111/j.1460-9568.2008.06555.x
- Yue, T.L., Wang, C., Romanic, A.M., Kikly, K., Keller, P., DeWolf, W.E., Jr., Hart, T.K., Thomas, H.C., Storer, B., Gu, J.L., et al. (1998). Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. J. Mol. Cell. Cardiol. 30, 495-507 https://doi.org/10.1006/jmcc.1997.0614
- Zhao, M., and Weissleder, R. (2004). Intracellular cargo delivery using tat peptide and derivatives. Med. Res. Rev. 24, 1-12 https://doi.org/10.1002/med.10056
- Zou, W., Yan, M., Xu, W., Huo, H., Sun, L., Zheng, Z., and Liu, X. (2001). Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J. Neurosci. Res. 64, 646-653 https://doi.org/10.1002/jnr.1118
Cited by
- Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction vol.137, pp.3, 2009, https://doi.org/10.1016/j.jconrel.2009.04.008
- Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins vol.92, pp.8, 2009, https://doi.org/10.1016/j.biochi.2010.04.005
- Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein fromArtemia franciscana vol.88, pp.6, 2009, https://doi.org/10.1139/o10-143
- Injectable biodegradable hydrogels: progress and challenges vol.1, pp.40, 2013, https://doi.org/10.1039/c3tb20940g
- Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model vol.21, pp.9, 2009, https://doi.org/10.3109/1061186x.2013.829072
- Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella vol.5, pp.2, 2015, https://doi.org/10.1002/ece3.1380
- Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations vol.39, pp.9, 2009, https://doi.org/10.1007/s12272-016-0786-9
- Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells vol.6, pp.None, 2009, https://doi.org/10.1038/srep30314
- Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction vol.17, pp.6, 2009, https://doi.org/10.1021/acs.molpharmaceut.0c00192
- Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction vol.17, pp.6, 2009, https://doi.org/10.1021/acs.molpharmaceut.0c00192