• Title/Summary/Keyword: mitochondria-dependent apoptosis

Search Result 185, Processing Time 0.021 seconds

Role of Annexin A5 on Mitochondria-Dependent Apoptosis Induced by Tetramethoxystilbene in Human Breast Cancer Cells

  • Hong, Mihye;Park, Nahee;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.519-524
    • /
    • 2014
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a trans-stilbene analogue, induces apoptosis in human cancer cells. However, the detailed mechanisms of mitochondria-dependent apoptosis induced by TMS are not fully understood. In the present study, the possible roles of annexin A5 in TMS-mediated apoptosis were investigated in MCF7 human breast cancer cells. Quantitative real-time PCR analysis and Western blot analysis showed that the expression of annexin A5 was strongly increased in TMS-treated cells. TMS caused a strong translocation of annexin A5 from cytosol into mitochondria. Confocal laser scanning microscopic analysis clearly showed that TMS induced translocation of annexin A5 into mitochondria. TMS increased the expression and oligomerization of voltage-dependent anion channel (VDAC) 1, which may promote mitochondria-dependent apoptosis through disruption of mitochondrial membrane potential. When cells were treated with TMS, the levels of Bax, and Bak as well as annexin A5 were strongly enhanced. Moreover, we found that the cytosolic release of apoptogenic factors such as cytochrome c, or apoptosis-inducing factor (AIF) in mitochondria was markedly increased. Annexin A5 depletion by siRNA led to decreased proapoptotic factors such as Bax, Bak, and annexin A5. Taken together, our results indicate that annexin A5 may play an important role in TMS-mediated mitochondrial apoptosis through the regulation of proapoptotic proteins and VDAC1 expression.

Minimal systems analysis of mitochondria-dependent apoptosis induced by cisplatin

  • Hong, Ji-Young;Hara, Kenjirou;Kim, Jun-Woo;Sato, Eisuke F.;Shim, Eun Bo;Cho, Kwang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Recently, it was reported that the role of mitochondria-reactive oxygen species (ROS) generating pathway in cisplatin-induced apoptosis is remarkable. Since a variety of molecules are involved in the pathway, a comprehensive approach to delineate the biological interactions of the molecules is required. However, quantitative modeling of the mitochondria-ROS generating pathway based on experiment and systemic analysis using the model have not been attempted so far. Thus, we conducted experiments to measure the concentration changes of critical molecules associated with mitochondrial apoptosis in both human mesothelioma H2052 and their ${\rho}^0$ cells lacking mitochondrial DNA (mtDNA). Based on the experiments, a novel mathematical model that can represent the essential dynamics of the mitochondrial apoptotic pathway induced by cisplatin was developed. The kinetic parameter values of the mathematical model were estimated from the experimental data. Then, we have investigated the dynamical properties of this model and predicted the apoptosis levels for various concentrations of cisplatin beyond the range of experiments. From parametric perturbation analysis, we further found that apoptosis will reach its saturation level beyond a certain critical cisplatin concentration.

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

Induction of Mitochondria-mediated Apoptosis by Solanum Nigrum in Leukemia Cells (용규(龍葵) 추출물이 백혈병 세포의 Apoptosis 유도에 미치는 영향)

  • Chang, Gyu-Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2008
  • Objectives In human myeloid leukemia cells, there are no specific features of apoptosis compared with apoptosis in other cell types. Solanum nigrum L.(SNL) is a deciduous tree, which is widely distributed in Korea with reported anti-tumor, anti-inflammatory and non-specific immune-enhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are unknown and its mode of action potential has never been investigated. Thus anti-tumor property of methanol extract was investigated. Methods In this study, anti-tumor property of methanol extract was investigated by determining its in vitro growth-inhibitory effects on human myeloid leukemia cells. XTT proliferation assay, DNA fragmentation, immunoblot analysis, densitometric analysis were used. Results 1. The methanol fraction of the extracts of SNL induced mitochondria-mediated apoptosis in human myeloid leukemia cells. 2. The methanol fraction exhibited relatively higher cytotoxic activity in a dose-dependent manner than chloroform, and hexane fraction. 3. Typical ladder profile of Oligonucleosomal fragments were appeared. 4. The secreted cytosolic cytochrome C level was increased by treatment of methanol fraction. Conclusions Methanol fraction of SNL is capable of inducing apoptosis in human myeloid leukemia cells.

  • PDF

Tetrandrine induces mitochondria-dependent apoptosis in HepG2 cells

  • Hee, Oh-Seon;Lee, Bang-Wool;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.278.2-279
    • /
    • 2002
  • Tetrandrine is a bis-benzyl isoquinoline alkaloid derived from the root of Stephania tetrandra S. Moore. which was reported to elicit in vitro cytotoxic effect on HeLa cells and in vivo supprresive effects on mouse ascite tumor. Tetrandrine also induced apoptosis in a various cell lines. Recent studies have revealed that mitochondria has been shown to play an important role in the regulation of apoptotic processes. (omitted)

  • PDF

Effect of Silk Fibroin Hydrolysate on the Apoptosis of MCF-7 human Breast Cancer Cells

  • Chon, Jeong-Woo;Jo, Yoo-Young;Lee, Kwang-Gill;Lee, Heui-Sam;Yeo, Joo-Hong;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.228-236
    • /
    • 2013
  • Breast cancer is one of the most common cancers among women worldwide. Recently anticancer agents have been developed using natural substances. To evaluate the anticancer effect of hydrolysates of silk fibroin (HSF), we investigated the effect of HSF on cell viability and apoptosis of a breast cancer cell line, MCF-7, induced through the mitochondrial pathway. The result showed that HSF decreased cell viability in MCF-7 cells in a dose- and time-dependent manner, resulting in an increase in the sub-G1 phase cell population. HSF increased the level of the pro-apoptotic Bax protein and decreased the levels of the anti-apoptotic Bcl-2 protein. In addition, HSF induced apoptosis in MCF-7 cells through a mitochondria-dependent pathway by increasing levels of cytochtome c, and cleavage of PARP. Taken together, these findings suggest that HSF inhibits the proliferation of MCF-7 breast cancer cells through a mitochondria and caspase dependent apoptotic pathway.

Extract of Alnus japonica Induces Apoptosis of Human Colon Adenocarcinoma Cells through the Mitochondria/Caspase Pathway (대장암세포주에서 적양 추출물의 미토콘드리아/Caspases 경로를 통한 Apoptosis 유도 작용)

  • Jeon, Byoung-Kook;Baik, Soon-Ki;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.199-205
    • /
    • 2012
  • An extract of Alnus japonica (Betulaceae) cortex has been traditionally used for purifying blood, and curing feces containing blood, enteritis, diarrhea, alcoholism and cut wounds. In the present study, we demonstrated that the ethanol extract of Alnus japonica (EAJ) exhibited significantly cytotoxicity in human colon adenocarcinoma HT-29 cells. The results showed that the induction of apoptosis in HT-29 cells by EAJ was characterized by chromatin condensation and activation of caspase-3. EAJ-induced activation of caspase-9 and -3 caused the cleavage of poly ADP-ribose polymerase (PARP) and the release of cytochrome c. The expressions of Bcl-2 and Bid were reduced by EAJ in HT-29 cells, whereas pro-apoptotic protein Bak was increased in the cells. EAJ-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP kinases (JNK and p38 MAPK), ASK1, and p53. NAC administration, a scavenger of ROS, reversed EAJ-induced cell death. In conclusion, these results indicated that EAJ can cause apoptosis through a ROS-mitochondria-caspases-dependent pathway in human HT-29 cells.