• Title/Summary/Keyword: Mitochondrial ATPase

Search Result 47, Processing Time 0.021 seconds

Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction

  • Eun Seong Hwang;Seon Beom Song
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.655-663
    • /
    • 2023
  • Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Discrimination of velvet antlers' origin using DNA polymorphisms

  • Chung, Hwan-Suck;Lee, Hye-Jeong;Kim, Young-Eun;Shin, Min-Kyu;Hong, Moo-Chang;Kim, Yang-Seok;Bae, Hyun-Su
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Velvet antlers from Cervus elaphus species are one of most famous, expensive and commonly used medicinal materials in traditional oriental medicine. Some distributor had illegal practice of disguising the origin of antlers in Korea market. Therefore, a test to distinguish antler essential to ensure the healthy development of the herbal industry. In this study, the variation in DNA sequences of the mitochondrial ATPase8 and cytochrome-coxidaseI (COI) genes of Cervus elaphus from China, the Republic of Altai, and Canada were evaluated. In addition, the sequence variation among, Rein deer and Cervus elaphus species was also evaluated. Although the sequences of deer from the Republic of Altai and Canada were very similar, polymorphisms that were conserved in each species were observed in the ATPase8 and COI genes. Therefore, these polymorphic markers could be used to distinguish Cervus elaphus antlers from different locations.

  • PDF

Ultrastructural and Cytochemical Studies on Root Hair Cells of Ginseng(Panax ginseng C.A. Meyer) (인삼(人蔘)(Panax ginseng C.A Meyer) 근모세포(根毛細胞)의 미세구조(微細構造) 및 (세포화학적)細胞化學的 연구(硏究))

  • Jeong, B.K.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.69-79
    • /
    • 1985
  • Ultrastructural and cytochemical studies of the root hair cell and the trichoblast were undertaken with light and electron microscopes to clarify the type of root hair, fine structure and the activities of acid phosphatase and ATPase. The root hair was differentiated from the middle portion of the cell, and perpendicularly to the long axis of the cell. Consequently, the type of root hair comes under the panicoid type. In the trichoblast, nucleus and cytoplasm are located in the vicinity of cortex. On the contrary, after the root hair is formed, they migrate to the apical region of the root hair, and the basal region of the root hair is filled with numerous vacuoles. Cell walls of actively growing root hairs are subdivided into two layers on the basis of the arrangement of cellulose microfibrils. New cell wall of the root hair is presumptively formed from Golgi complex-derived vesicles. Activity of acid phosphatase appeared on tonoplast, plasma membrane, and nuclear envelope, whereas ATPase activity appeared on the plasma membrane, heterochromatin, and mitochondrial cristae.

  • PDF

Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats

  • Weijie, Xie;Ting, Zhu;Ping, Zhou;Huibo, Xu;Xiangbao, Meng;Tao, Ding;Fengwei, Nan;Guibo, Sun;Xiaobo, Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

Temporal changes in mitochondrial activities of rat heart after a single injection of iron, including increased complex II activity

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Male rats were given a single injection of iron, and temporal changes in iron content and iron-induced effects were examined in heart cellular fractions. Over a period of 72 h, the contents of total and labile iron, reactive oxygen species, and NO in tissue homogenate, nuclear debris, and postmitochondrial fractions were mostly constant, but in mitochondria they continuously increased. An abrupt decrease in membrane potential and NAD(P)H at 12 h was also found in mitochondria. The respiratory control ratio was reduced slowly with a slight recovery at 72 h, suggesting uncoupling by iron.While the ATP content of tissue homogenate decreased steadily until 72 h, it showed a prominent increase in mitochondria at 12 h. Total iron and calcium concentration also progressively increased in mitochondria over 72 h. Enzyme activity of the oxidative phosphorylation system was significantly altered by iron injection: activities of complexes I, III, and IV were reduced considerably, but complex II activity and the ATPase activity of complex V were enhanced. A reversal of activity in complexes I and II at 12 h suggested reverse electron transfer due to iron overload. These results support the argument that mitochondrial activities including oxidative phosphorylation are modulated by excessive iron.

Description of Nearly Completed Mitochondrial Genome Sequences of the Garden Chafer Polyphylla laticollis manchurica, Endangered in Korea (Insecta: Coleoptera)

  • Kim, Min Jee;Kim, Ki-Gyoung;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.185-202
    • /
    • 2013
  • In this study, we present the nearly complete mitogenome sequences of the garden chafer, Polyphylla laticollis manchurica, which is listed as an endangered species in Korea. The P. l. manchurica mitogenome, which includes unfinished whole A+T-rich region and a partial srRNA was 14,473-bp long, possessing typical sets of genes (13 PCGs, 22 tRNA genes, and 2 rRNA genes). Gene arrangement of the P. l. manchurica mitogenome was identical to the common one found in the majority of insects. The 5 bp-long motif sequence (TAGTA) that has been suggested to be the possible binding site for the transcription termination peptide for the major-strand was also found in the P. l. manchurica mitogenome between $tRNA^{Ser}$(UCN) and ND1. The start codon for COI gene and ATPase8 was designated as a typical TTG. All tRNAs of the P. l. manchurica showed a stable canonical clover-leaf structure of other mt tRNAs, except for $tRNA^{Ser}$(AGN), DHU arm of which could not form stable stemloop structure. As has been previously determined, the high A/T content was unanimously observed in P. l. manchurica in terms of A/T bias in the third codon position (73.5%) compared with the first (66.4%) and second codon position (66.2%). The PCGs encoded in major-strands are slightly T-skewed, whereas those of the minor-strand are A-skewed, indicating strand asymmetry in nucleotide composition in the Coleoptera including P. l. manchurica.

Mechanisms of Russell's Viper Venom Toxicity on Renal Function; Reversal by Antivenom

  • Chaiyabutr, Narongsak;Napathorn, Sophon;Sitprija, Visith
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.117-125
    • /
    • 2001
  • Envenoming by Russells viper causes a broad spectrum of renal impairment. Renal failure is an important complication in patients bitten by Russells viper. Experimental work in animals and in vitro has elucidated pathophysiological mechanisms that contribute to life threatening complications and have suggested possibilities for therapeutic intervention. The evidence in experimental animals regarding mechanisms of venom action in relation to changes in either extrarenal or intrarenal factors is presented. The cardiovascular system and renal hemodynamics are affected by venom. Reductions of renal function including renal hemodynamics are associated directly with changes in general circulation during envenomation. Possible endogenous mechanisms for releasing the hormone inducing renal vasoconstriction after envenomation are evident. Hormonal factor such as the catecholamine, prostaglandin and renin angiotensin systems induce these changes. Direct nephrotoxicity of venom action is studied in the isolated per-fused kidney. Characteristic polarization of the cell membrane, changes of mitochondrial activity and Na-K ATPase in renal tubular cells are observed. Changes in renal function and the cardiovascular system are observed of ter envenomation and are reversed by the administration of Russells viper antivenom (purified equine immunoglobulin, $Fab_2$ fragment). The neutralizing effects are more efficient when the intravenous injection of antivenom is given within 30 min after the envenomation.

  • PDF

Cell Death and Proliferation after Treatment and Reinfection of Clonorchis sinensis in the Sprague-Dawley Rat Bile Duct

  • Min, Byoung-Hoon;Ahn, Ka-Young;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.80-88
    • /
    • 2015
  • The structural change and distribution of mitochondrial enzyme (ATPase, cytochrome-c-oxidase), cell proliferation (proliferating cell nuclear antigen, PCNA), cell death (caspase-3) and cell growth factor (fibroblast growth factor 8, FGF-8) in the Sprague-Dawley rat bile duct during Clonorchis sinensis infection was investigated. Experimental groups were divided into C. sinensis infection, superinfection and reinfection of C. sinensis after 'praziquantel' treatment group. As a result, C. sinensis infected rat bile ducts showed the features of chronic clonorchiasis, i.e., connective tissue thickening, ductal fibrosis and epithelial tissue dilatation. PCNA for cell proliferation increased in the infection group, and decreased after praziquantel treatment. Caspase-3 was distributed in reinfection group only. FGF-8 was distributed in the rat bile duct after praziquantel treatment but not distributed in infection and reinfection group. Overall, C. sinensis infection causes physical and chemical irritations and then brings on the abnormalities of intracellular energy metabolism and cellular growth factors, which hinders bile duct tissue from functioning properly, and resultingly, fibrosis occurs and epithelial cells dilated abnormally. More intense infection makes tissue fibrosis chronical and activates apoptosis factors.

An integrated review on new targets in the treatment of neuropathic pain

  • Khangura, Ravneet Kaur;Sharma, Jasmine;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.1-20
    • /
    • 2019
  • Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, $Wnt/{\beta}-catenin$ and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.