• 제목/요약/키워드: Mission Profile

검색결과 96건 처리시간 0.026초

RAM 요소설계 목표값 연구 (A Study on the RAM Object Values)

  • 이한규;최진희
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.218-230
    • /
    • 2000
  • In the weapon system development/operation stage, the goals of RAM activities are to support the cost effective performance optimization in design and operation supports. In the study, the main contents are as follows; 1) To establish the operational concept and circumstance of the subsequent tank, the combat/operation scenario, the operational mode summary and mission profile for subsequent tank development are analyzed. 2) To evaluate the administrative and logistics down time for subsequent tank, the prefigured logistics circumstance and maintenance system are analyzed. 3) To calculate the RAM object values, a mathematical model for the user are developed. 4) To examinate the propriety of the RAM object values, the combat readiness are reviewed. The obtained RAM object values are provided to predict and analyze for the combat readiness, staying power, mission reliability, equipment availability and the logistic support capability.

  • PDF

Multiple revolution Lunar Trajectory Design using Impulsive Thrust

  • Kang, Hye-Young;Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.25.3-26
    • /
    • 2008
  • The direct way to the moon is to start from the parking orbit by using impulsive thruster In previous domestic research, the direct way has been studied by using a single impulsive shot. However, when a single impulsive shot occurs to go into a Translunar orbit, gravity losses occur because thruster is not impulsive shot but the finite burns and it causes the gravity losses. To make up for the weak point of a single impulsive shot, this paper divides TLI (Trans Lunar Injection) into several small burns. Therefore, departure loop trajectory and the Translunar trajectory. This method is useful not only to reduce the gravity losses but also to check the condition of satellite. By using this method, this paper demostrates the optimized trajectory from Earth parking orbit to lunar mission orbit which minimizes the fuel, and the SNOPT (Sparse Nonlinear OPTimizer software) is used to find optimal solution. Also, this paper provides lunar mission profile which includes the mission schedule when TLI, LOI (Lunar Orbit Insertion) maneuvers occur, a mount of fuel when thruster is used and other mission parameters.

  • PDF

A Novel Technique to Miniaturize Microstrip Antennas with a Locally Non-Homogeneous Substrate Configuration

  • Lee, Byung-Je;Kim, Jong-Heon;Lee, Jong-Chul;Kim, Nam-Young
    • 한국전자파학회논문지
    • /
    • 제11권8호
    • /
    • pp.1355-1362
    • /
    • 2000
  • Microstrip antennas are attractive for many applications because of their compact size, low profile, and light weight. Recently, the demand for the miniaturization of the personal communication equipment has been increasing along with the proliferation of personal communication systems. Thus, the development of small antenna has been highly demanded. In this paper, a new technique to reduce the overall dimension of a microstrip antenna with a locally non-homogeneous substrate configuration is proposed. The miniaturized microstrip antenna for a repeater system in a mobile communication cellular band(824~894 MHz) is designed with the proposed technique, and commercialized with low cost, light weight, and small size. Comparison between simulations, based on Agilent Technologies HFSS software, and measurements are provided. The proposed method will be more attractive for a light-weight, small-size, and low-cost microstrip array design. This paper also presents the bandwidth improvement technique for under-coupled microstrip patch antenna with a tuning stub.

  • PDF

다목적실용위성 3호의 임무를 고려한 전력 모의실험 결과

  • 문인호;박선주;정옥철;전문진;정대원
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.176.2-176.2
    • /
    • 2012
  • 다목적실용위성 3호의 태양전지판은 위성의 -Z축 방향에 고정되어 있는 방식으로 사용되고 있다. 이로 인해 위성이 임무수행을 위한 자세기동을 하게 되면 태양전지판의 태양입사각 변화에 따라 전력생산량이 변하게 되고 이를 예측하여 최대 방전률(DOD : Depth of Discharge)을 넘지 않는 제한조건 내에서 임무 계획을 수행해야 한다. 전력생산량 및 전력소비량을 예측하기 위해서는 전력 모의실험을 수행해야 하며 이를 위해 위성의 자세 및 위치정보, 임무를 고려한 Mission Profile, 태양입사각, 초기 방전률 값을 생성해야 한다. 본 논문은 태양입사각 계산을 위해 위성의 임무(영상 촬영, 지상국 교신)를 반영한 자세 및 위치 정보를 생성하고, 이 결과를 태양입사각 계산 로직에 적용하여 태양입사각을 생성한 결과를 정리하였다. 생성된 결과의 타당성을 검토하기 위해 상용 툴인 STK를 이용하여 비교를 수행하였다. 또한, 전력 모의실험에 사용된 Mission Profile은 위성 운용에 안정성을 높이며 복잡한 임무 시나리오에 적용이 용이하도록 운용 Margin을 고려하여 생성하였다. 본 논문에서 제시한 방안을 실제 수행된 임무 시나리오에 적용하여 전력 모의실험을 수행하였으며, 그 결과를 임무 수행 후 획득된 위성 Telemetry를 이용한 실측값과 비교하여 전력 모의 실험 결과에 대한 타당성을 검증하였다. 실제 초기 운영결과 제한된 전력 허용 범위 내에서 적용이 가능함을 확인할 수 있었다.

  • PDF

무인지상로봇 효과분석의 신뢰성 향상을 위한 효과척도 설정방안 연구 (A Study of MOE Establishment for Improving the Credibility of UGV Effectiveness Analysis)

  • 이재영;변재정;김종만
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권3호
    • /
    • pp.197-202
    • /
    • 2014
  • In the 21st century, the roles of UGV in the ground battle draw its attention and many research about how to use it is going on globally, but not many study is doing about how to measure its combat effectiveness in the battle. Basically, the effectiveness of UGV is different from its mission profile. Hence, we proposed Measures Of Effectiveness which can measure the UGV effectiveness based on five different missions such as mine detection, nbc detection, reconnaissance, rescue, and fire mission. We expect that these Measures Of Effectiveness proposed are able to contribute to increase the credibility of the study results for UGV effectiveness. We also hope that this paper can stimulate to expand the research scope and related field about UGV effectiveness in the future.

IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석 (Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation)

  • 전수환;양영록;문혁;김준영;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

무기탑재 전투차량의 임무부하분석을 위한 OMS/MP 방법론과 적용 연구 (A Study on OMS/MP of a Combat Vehicle Mounted with Weapon Systems for Power and Energy Control Strategy Development and its Application)

  • 유삼현;이종우;이민형;이승민;장명언
    • 한국군사과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.48-55
    • /
    • 2013
  • To obtain the requirements of capability and analyze mission loads for weapon systems which are in process of development, Operational Mode Summary/Mission Profile(OMS/MP) should be documented in advance. In this paper, we have proposed a systematic and practical OMS/MP model processes of a weapon mounted combat vehicle for analyzing power and energy strategy. The wartime and peacetime OMS/MP of a hybrid wheeled combat vehicle which is mounted with an anti-tank guided weapon(ATGW) is also presented as its application.

모듈형 플랫폼을 적용한 자율비행 무인표적기 시스템 개발 (Development of Autonomous Aerial Target System Applying the Modular Platform)

  • 김태욱
    • 한국항공운항학회지
    • /
    • 제30권3호
    • /
    • pp.109-116
    • /
    • 2022
  • A modular platform development technique was proposed to minimize development cost and development period by utilizing the already developed unmanned Aerial target AVT, which has been operated and verified for many years. New Mission Profile was designed and structural analysis was performed through finite element analysis (FEA) by analyzing mission requirements for visual short-range, non-visible mid-range, and long-range targets. The targets are used for guided missile anti-aircraft training. In addition, avionics systems including flight control computers for autonomous flights were developed to verify their conformance by performing launcher take-off tests with rapid acceleration changes and autonomous flight tests at a maximum speed of 300km per hour.

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.

스마트 무인기 시스템 요건 도출 (Generation of System Requirements for Smart UAV)

  • 이정진
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.17-22
    • /
    • 2004
  • This paper present the brief generation process of system requirements or mart UAV from a development obejective. The current Snart UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle beacuse of the new technology demonstration research program funded by goverments. The Smart UAV system consists of flight vechicle, avionics, communication link, payload, ground control stationand ground supporting system. In thus paper, top-down flown requirememts are intoduced how to allocate to each sub-system.

  • PDF