• Title/Summary/Keyword: Missing Value Estimation

Search Result 32, Processing Time 0.021 seconds

Nonestimability of missing values for $2^K$ and $3^K$Factoroial Designs

  • Jung W. Sim;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 1984
  • A method of missing value estimation for a general design is descrived. In particular, the cases of missing value estimation for $2^k$ and $3^k$ design are explored and discussed. Some examples are illustrated to show the missing value estimation and the nonestimatimable cases.

  • PDF

A Study on Automatic Missing Value Imputation Replacement Method for Data Processing in Digital Data (디지털 데이터에서 데이터 전처리를 위한 자동화된 결측 구간 대치 방법에 관한 연구)

  • Kim, Jong-Chan;Sim, Chun-Bo;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.245-254
    • /
    • 2021
  • We proposed the research on an analysis and prediction model that allows the identification of outliers or abnormality in the data followed by effective and rapid imputation of missing values was conducted. This model is expected to analyze efficiently the problems in the data based on the calibrated raw data. As a result, a system that can adequately utilize the data was constructed by using the introduced KNN + MLE algorithm. With this algorithm, the problems in some of the existing KNN-based missing data imputation algorithms such as ignoring the missing values in some data sections or discarding normal observations were effectively addressed. A comparative evaluation was performed between the existing imputation approaches such as K-means, KNN, MEI, and MI as well as the data missing mechanisms including MCAR, MAR, and NI to check the effectiveness/efficiency of the proposed algorithm, and its superiority in all aspects was confirmed.

Probability Estimation Method for Imputing Missing Values in Data Expansion Technique (데이터 확장 기법에서 손실값을 대치하는 확률 추정 방법)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 2021
  • This paper uses a data extension technique originally designed for the rule refinement problem to handling incomplete data. This technique is characterized in that each event can have a weight indicating importance, and each variable can be expressed as a probability value. Since the key problem in this paper is to find the probability that is closest to the missing value and replace the missing value with the probability, three different algorithms are used to find the probability for the missing value and then store it in this data structure format. And, after learning to classify each information area with the SVM classification algorithm for evaluation of each probability structure, it compares with the original information and measures how much they match each other. The three algorithms for the imputation probability of the missing value use the same data structure, but have different characteristics in the approach method, so it is expected that it can be used for various purposes depending on the application field.

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

A study to improve the accuracy of the naive propensity score adjusted estimator using double post-stratification method (나이브 성향점수보정 추정량의 정확성 향상을 위한 이중 사후층화 방법 연구)

  • Leesu Yeo;Key-Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.547-559
    • /
    • 2023
  • Proper handling of nonresponse in sample survey improves the accuracy of the parameter estimation. Various studies have been conducted to properly handle MAR (missing at random) nonresponse or MCAR (missing completely at random) nonresponse. When nonresponse occurs, the PSA (propensity score adjusted) estimator is commonly used as a mean estimator. The PSA estimator is known to be unbiased when known sample weights and properly estimated response probabilities are used. However, for MNAR (missing not at random) nonresponse, which is affected by the value of the study variable, since it is very difficult to obtain accurate response probabilities, bias may occur in the PSA estimator. Chung and Shin (2017, 2022) proposed a post-stratification method to improve the accuracy of mean estimation when MNAR nonresponse occurs under a non-informative sample design. In this study, we propose a double post-stratification method to improve the accuracy of the naive PSA estimator for MNAR nonresponse under an informative sample design. In addition, we perform simulation studies to confirm the superiority of the proposed method.

SMOOTH SINGULAR VALUE THRESHOLDING ALGORITHM FOR LOW-RANK MATRIX COMPLETION PROBLEM

  • Geunseop Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.427-444
    • /
    • 2024
  • The matrix completion problem is to predict missing entries of a data matrix using the low-rank approximation of the observed entries. Typical approaches to matrix completion problem often rely on thresholding the singular values of the data matrix. However, these approaches have some limitations. In particular, a discontinuity is present near the thresholding value, and the thresholding value must be manually selected. To overcome these difficulties, we propose a shrinkage and thresholding function that smoothly thresholds the singular values to obtain more accurate and robust estimation of the data matrix. Furthermore, the proposed function is differentiable so that the thresholding values can be adaptively calculated during the iterations using Stein unbiased risk estimate. The experimental results demonstrate that the proposed algorithm yields a more accurate estimation with a faster execution than other matrix completion algorithms in image inpainting problems.

Imputation of Medical Data Using Subspace Condition Order Degree Polynomials

  • Silachan, Klaokanlaya;Tantatsanawong, Panjai
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.395-411
    • /
    • 2014
  • Temporal medical data is often collected during patient treatments that require personal analysis. Each observation recorded in the temporal medical data is associated with measurements and time treatments. A major problem in the analysis of temporal medical data are the missing values that are caused, for example, by patients dropping out of a study before completion. Therefore, the imputation of missing data is an important step during pre-processing and can provide useful information before the data is mined. For each patient and each variable, this imputation replaces the missing data with a value drawn from an estimated distribution of that variable. In this paper, we propose a new method, called Newton's finite divided difference polynomial interpolation with condition order degree, for dealing with missing values in temporal medical data related to obesity. We compared the new imputation method with three existing subspace estimation techniques, including the k-nearest neighbor, local least squares, and natural cubic spline approaches. The performance of each approach was then evaluated by using the normalized root mean square error and the statistically significant test results. The experimental results have demonstrated that the proposed method provides the best fit with the smallest error and is more accurate than the other methods.

Missing Values Estimation for Time Course Gene Expression Data Using the Sequential Partial Least Squares Regression Fitting (순차적 부분최소제곱 회귀적합에 의한 시간경로 유전자 발현 자료의 결측치 추정)

  • Kim, Kyung-Sook;Oh, Mi-Ra;Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.275-290
    • /
    • 2008
  • The size of microarray gene expression data is very big and its observation process is also very complex. Thus missing values are frequently occurred. In this paper we propose the sequential partial least squares(SPLS) regression fitting method to estimate missing values for time course gene expression data that has correlations among observations over time points. The SPLS method is to combine the sequential technique with the partial least squares(PLS) regression fitting method. The usefulness of method proposed is evaluated through some simulation study for three yeast time course data.

Missing Data Correction and Noise Level Estimation of Observation Matrix (관측행렬의 손실 데이터 보정과 잡음 레벨 추정 방법)

  • Koh, Sung-shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.99-106
    • /
    • 2016
  • In this paper, we will discuss about correction method of missing data on noisy observation matrix and uncertainty analysis for the potential noise. In situations without missing data in an observation matrix, this solution is known to be accurately induced by SVD (Singular Value Decomposition). However, usually the several entries of observation matrix have not been observed and other entries have been perturbed by the influence of noise. In this case, it is difficult to find the solution as well as cause the 3D reconstruction error. Therefore, in order to minimize the 3D reconstruction error, above all things, it is necessary to correct reliably the missing data under noise distribution and to give a quantitative evaluation for the corrected results. This paper focuses on a method for correcting missing data using geometrical properties between 2D projected object and 3D reconstructed shape and for estimating a noise level of the observation matrix using ranks of SVD in order to quantitatively evaluate the performance of the correction algorithm.

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.