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Abstract—Temporal medical data is often collected during patient treatments that 
require personal analysis. Each observation recorded in the temporal medical data is 
associated with measurements and time treatments. A major problem in the analysis of 
temporal medical data are the missing values that are caused, for example, by patients 
dropping out of a study before completion. Therefore, the imputation of missing data is 
an important step during pre-processing and can provide useful information before the 
data is mined. For each patient and each variable, this imputation replaces the missing 
data with a value drawn from an estimated distribution of that variable. In this paper, we 
propose a new method, called Newton’s finite divided difference polynomial 
interpolation with condition order degree, for dealing with missing values in temporal 
medical data related to obesity. We compared the new imputation method with three 
existing subspace estimation techniques, including the k-nearest neighbor, local least 
squares, and natural cubic spline approaches. The performance of each approach was 
then evaluated by using the normalized root mean square error and the statistically 
significant test results. The experimental results have demonstrated that the proposed 
method provides the best fit with the smallest error and is more accurate than the other 
methods.  
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1. INTRODUCTION 

Temporal medical data are sequences of event values occurring over a period of time. 
Depending on the measurements of various indicators related to the medical condition being 
studied, the medical data in a patient case series is collected from the patient’s health records 
and treatments (temporal data). Each event that occurs at each time point has a value that is 
recorded. The aggregate of all these values represents a single variable (such as a body mass 
index [BMI] over a time period). However, the dimension of each case series might not be the 
same as there were the difference in the number of treatments or it was about the time for 
patients treated. Problems involving temporal data can be analyzed from patterns over time and 
so on. Therefore, processing information within the time domain in medical research often 
requires appropriate technical knowledge and an understanding of processing. At the same time, 
there are numerous pitfalls that come with these benefits; one being that the medical data in a 
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time series often contains missing or irregular data. The missing temporal data are significant 
and may cause major problems, although this has received little attention in the field of medical 
analysis. Missing data may result from patients not completing treatments as indicated, by 
patients dropping out of a study before completion, and so on [1]. In addition, if we want a set of 
temporal medical data for analyzed or mining the data. This missing data can be a problem when 
analyzed by information processing models. This is due to the fact that many learning 
algorithms require complete data sets to enable the analysis or mining of data. Therefore, 
missing attribute values are a very important issue in data analysis. In situations where missing 
data is likely to occur, the researcher is often advised to plan to use mining data methods. 

The imputation of missing data becomes an important method in temporal medical data, 
where it is crucial to use all of the available data and to not discard records with missing values. 
Imputing missing values is one of the biggest tasks in pre-processing when performing data 
mining or data analysis, and it can help produce good quality medical data to provide a complete 
dataset [2]. The occurrence of missing values can be captured by three types of missing data, 
which are as follows: missing-completely-at-random, where the gaps in y are independent of 
both x and y; missing-at-random (MAR), where the gaps in y depend on x but not on y; and non-
ignorable, where the gaps in y depend on y and possibly also on x [3-6]. There are many 
approaches for improving the quality of temporal medical data when information is missing, 
which are as follows: 1) ignoring objects containing missing values is the easiest and most 
commonly approach applied; 2) filling in missing values manually; or 3) the imputation of 
missing values [5-7].  

The concept of this paper was to using specific measured data to estimate the missing values 
in each case series should result in acceptable values [8,9]. Patterns in temporal data can be 
represented in samples at discrete time points based on various sampling intervals. Some general 
guidelines for estimating data values with interpolation are as follows: interpolation schemes 
should model values between and possibly beyond known data points, the principal polynomial 
should fit with the selected data points, and the polynomial function should be able to 
reasonably estimate the value of the unknown function [10]. In this work, a combination of 
polynomial functions and the values associated with the missing polynomial are used to estimate 
the missing values for each patient. 

Our main purpose is to discuss a method for imputing missing data in temporal medical data 
using Newton’s finite divided difference polynomial interpolation with a condition order degree 
(NFDC). We have proposed this method as a means to estimate values by polynomial 
interpolation, to determine base time points, and to compensate for missing values in clinical 
and two-dimensional medical data. To measure the performance of the imputation, we evaluated 
the accuracy of the approach on a real data set related to obesity and compared it with existing 
imputation methods.  

This paper contains six sections. Section 2 presents a brief overview of the research on the 
estimation of temporal medical data, while new and traditional polynomial interpolation 
methods are detailed in Section 3. Section 4 provides the theoretical framework for NFDC, 
which we compared with the k-nearest neighbor (k-NN), local least squares (LLS), and natural 
cubic spline methods. Section 5 analyzes the performance of the four imputation methods and 
we present our conclusions in Section 6.  
  



 
Klaokanlaya Silachan and Panjai Tantatsanawong 

 

397 

2. RELATED WORK 

Interpolation algorithms aim to predict the value of a variable by using other values of the 
same variable. The structure of an interpolation model is a function between known points. 
Therefore, applying the interpolation technique to estimate and impute missing data involves 
finding an approximation function to estimate values. The known points (x1, x2, …, xn) are 
called interpolation points. For interpolation with equally spaced data, as the distance between 
each pair of interpolation points is constant, we write xi = x(ti) for i = 1, 2, …, n, that is, (x(t1), 
x(t2), ...., x(tn)). Interpolation will determine the function f(x) at unknown points, while the 
estimation function will allow the calculation of the function f(x) at desired points for 
developing the closest estimate. The function f(x) is estimated to determine the values of x, 
which estimate a smooth curve on the entire domain of the function f(x). Therefore, x is a value 
between x1 and xn in the data set [10-12]. This is because random data requires finding an 
approximate function to use in place of a more complicated function. This method is 
distinguished by a degree of continuity [13-15]. Estimating the function used for data collection 
requires estimating the unknown parameters at each point of interest using values obtained from 
measurements. If data from a number of different positions (discrete data points) are used, the 
proposed data will change the results of the continuous function. The function is affected not 
only by indicating the location of the interpolation, but also by including values at a point 
between two different positions. This is, therefore, a complete data representation. Recently, 
several papers have focused on modeling and analyzing temporal medical data. The following 
sentence is a summary of related work on the principles of estimating missing values. We found 
no previous research on our proposed finite divided difference method for estimating incomplete 
temporal medical (clinical) data with different time points in each patient case series. 

Noraziana et al. [16] studied effective steps for extracting data that is missing by replacing 
each value with the mean value of the two points that occur before and after (mean-before-after). 
Hourly annual inspection records for PM10 in Seberang Perai, Penang, Malaysia, were selected 
for modeling the missing data (PM107). This analysis was used to estimate six techniques. The 
techniques used to estimate the missing value were linear, quadratic, and cubic splines and 
nearest neighbor.  

In a study conducted by Bose et al. [17], it was shown that microarray experiments could 
generate data sets with multiple missing expression values normally, due to various 
experimental problems. Unfortunately, many algorithms for gene expression analysis require a 
complete matrix of gene array values as the input. Therefore, the effective estimation of missing 
values is essential for minimizing the effect of incomplete data sets and to increase the range of 
data sets to which these algorithms can be applied. In this regard, a new interpolation-based 
imputation method was proposed to predict missing values in microarray gene expression data. 
The proposed method selects a subset of similar genes and a subset of similar samples with 
respect to each missing position, and then applies interpolation in a novel manner to predict a 
missing value. 

Viana et al. [12] focused on the data preparation process used by air-mobile satellites to 
predict the degradation of the solar array. In particular, the problem of the loss of information 
due to missing values was addressed. 

Jerez et al. [18] presents methods that are based on machine learning techniques for 
imputation in medical databases. The authors concluded that methods based on machine learning 
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techniques appear to be suited for the imputation of missing values (i.e., for the multi-layer 
perceptron, self organizing maps, and k-NN). It has been asserted that this has led to a 
significant enhancement in prognosis accuracy as compared to imputation methods based on 
statistical estimation, that is, mean values, hot-deck and multiple imputation. The methods were 
used to impute absent values in the ‘El Alamo-I’ breast cancer data set, which contains 3,679 
records from different hospitals and the Spanish Breast Cancer Research Group (GEICAM) [18].  

The analysis by Eisemann et al. [19] is based on the malignant melanoma data set and the 
female breast cancer data set from the Schleswig-Holstein Cancer Registry in Germany. The 
cases with complete tumor stage information were extracted and their stage information was 
partly removed according to an MAR pattern, resulting in five simulated data sets for each 
cancer entity. The missing tumor stage values were then treated with multiple imputation using 
chained equations, polynomial regression, predictive mean matching, random forests, and 
proportional sampling as imputation models. The estimated tumor stages, stage-specific 
numbers of cases, and survival curves after multiple imputations were compared to the 
observations. The observed tumor stages on the individual level, the stage-specific numbers of 
cases, and the observed survival curves were most accurately estimated by polynomial 
regression and predictive mean matching, while the random forest and proportional sampling 
models were less accurate. 

Tsumoto [20] introduced a combination of the extended moving average method and the rule 
induction method for continues attribute, called CEARI, to discover new information in 
temporal databases. CEARI was then applied to a medical dataset related to motor neuron 
diseases. The data set have many missing values,. In this way, medical physician selected a 
specific test. They may not take the same test. Missing values will be observed very often in 
clinical situations. 

 
 

3. METHODOLOGY 

In this section, the proposed imputation model from temporal medical dataset is explained in 
detail. The temporal data structure is transformed from a low dimension to a subspace with 
missing data to reduce the dimension of the feature vectors. A subset of the rows and columns of 
the matrix form the subspace. One must first locate a subspace for a patient case series and fit it 
to a low-rank matrix. A subspace of the data may be used to compute the missing elements. The 
subspace matrix has size m × n. The subspaces are different for each patient case series, and 
even the dimensions of patient case might not be the same. The four imputation techniques are 
applied to the subspace matrices. 

 
3.1 Data Sets 

The data set that we used contains 400 cases with approximately 1,200 records from patients 
at the Cardiovascular and Metabolism Center, Ramathibodi Hospital with obesity and 
cardiovascular or heart diseases. The structure of medical temporal data was shown in Table 1. 
The data structure consists of re-code numbers, patient ID numbers, and treatment dates, as well 
as the patient’s age, sex, height, weight, BMI, basal metabolic rate (BMR), skeletal muscle mass 
(SMM), percentage of body fat, waist/hip ratio, edema examination, target control, weight 
control, fat control, muscle control, fitness score, body mass, and protein (g). 
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Table 1. Structure of medical temporal data 

 Measurement variable  
X T1 T2 T3 … Tn 

Body mass index x - x … x 
Basal metabolic rate - - x … x 

… … … … … … 
N x x x … x 

  

The Table 2 shows a set of patient visits is defined, where ti is the i-th visit of a patient j, Tj = 
{t1, t2, t3, …, tn}, where n is the total number of visits. Personal patient data is collected over n 
visits in an m × n dimension matrix. In the time series X = {x1, x2, ... , xn}, X is the measurement 
variable, xi is the recorded value of the measurement variable X at time i, and n is the number of 
observations. Each event occurring at each time point has a value that was recorded.  

 
Table 2. Structure of obesity medical temporal data 

Case-PID Time Weight BMI BMR SMM  Protein (g) Xn Class label 
1 1 x x - x  x . 1 
1 2 x - - x  - . 1 
1 3 - x x -  x . 1 

…. … … … … …  … . .. 
2 1 x - x x  x . 0 

BMI=body mass index, BMR=basal metabolic rate, SMM=skeletal muscle mass. 
 
Formally, a patient case series in temporal medical data can be represented by PIDxx-X =

 {xit1, xit2, …, xitn}. 
 

3.2 Comparison with Other Imputation Methods 

In the imputation method for medical temporal data, the data are considered to be in the 
matrix X with n rows and n columns. The rows are assumed to correspond to entities 
(observations) and for the columns to correspond to variables (features). The elements of X are 
denoted by xik (i = 1, ..., n; k = 1, …, n). The situation in which some entries (i, k) in X are 
missing is modeled with an additional matrix. The Table 3 shows the summaries of some related 
method by imputation technique . 

 
Table 3. Summaries of some related method 

Method Imputation technique 
Natural cubic spline Polynomial coefficients 
k-NN Euclidean distance function 
LLS Regression and correlation 
NFDC (proposed)  Polynomial function with a condition order degree polynomial 

k-NN=k-nearest neighbor, LLS=local least squares, NFDC=Newton’s finite divided difference polynomial interpolation with a 
condition order degree 
    

3.2.1 k-NN  
The k-NN imputation method, as developed by Troyanskaya et al. [7], imputes the missing 

values in an instance of interest by considering a given number of variables. In the k-NN method, 
variables are imputed using variables that are the most similar. Similarity is measured to 
calculate the distance. The k-NN method imputes missing values using a selection based on the 
similarity of the expression. The missing values for an instance are imputed by considering a 
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given number of instances that are the most similar to the instance of interest. This step of k-NN 
imputation for temporal medical data is used to determine the k closest-neighbors. That is, to 
find a target similar to the missing values to impute. Euclidean distance metrics are used for this 
purpose. The problem with temporal medical data for a selected value k is that the data needs to 
be reliably transformed to a lower-dimensional subspace. In this research, the conditions for 
selecting k are determined by monitoring the number of treatment visits for each patient’s 
subspace using the Euclidean distance from the number of rows in each of patient subspace 
[21,22]. 

 
3.2.2 LLS 
The LLS imputation is comprised of the following two processes: selecting the vector or k 

variables based on Pearson correlation coefficients, and estimating the missing values by setting 
up linear regression equations. To estimate the missing values using the most appropriate linear 
equation, the least square is used, which, when applied to estimating the missing values in 
temporal medical data, results in the minimum sum of squared distances between the points (x, y) 
and a line [2,23].  

 
3.2.3 Natural cubic spline 
Natural cubic spline interpolation was also selected as an appropriate method for estimating 

intermediate values between the measured values. Assuming that a collection of known points is: 
(x0, y0), (x1, y1), ..., (xn, yn), the natural cubic spline estimates the missing values by observing 
the value of the spline. To interpolate between data points using constrained cubic splines. In 
general, constrained is well known that are condition function of the natural cubic spline to give 
only the data point (xi, yi), we must determine the polynomial coefficients for each partition so 
that the resulting polynomials pass through the data points and are continuous in their first and 
second derivatives. Data points can be represented using a third-order polynomial, Si(x) = aix

3 + 
bix

2 + cix + di, which is constructed on each closed interval [xi-1, xi]. Cubic splines have the 
following properties: 1) they interpolate the given data; 2) there is continuity of the zeroth, first, 
and second derivatives at interior points; and 3) they satisfy certain boundary conditions.            
The natural free boundary condition is the most common. Alternatively, one may use clamped or 
fixed boundary conditions. 

Given n+1 distinct knots xi such that: x0 < x1 < … < xn, and the corresponding value is yi, a 
cubic spline function is constructed using a cubic polynomial in each interval, such that the 
spline and its first and second derivatives are all continuous [24,25]. If there are missing values 
in the first or last position, extrapolation is used to impute that value. 

 
 

4. PROPOSED MODEL: NFDC  

In this paper, we propose a new method called NFDC. NFDC imputation is based on the idea 
that using a value of a measured variable for each patient to replace the missing values should 
result in an acceptable estimate. The imputation method is specified separately for each patient 
case series. The dimension of each patient case series may differ because of the different 
numbers of time-treatments or time points for each patient. Therefore, the method for estimating 
the missing values can be represented as sampling at discrete time events based on various 



 
Klaokanlaya Silachan and Panjai Tantatsanawong 

 

401 

sampling intervals. The function that interpolates the data is an interpolating polynomial. The 
NFDC method is used to find a function f(x) from data in every given position, such that f(x) 
interpolates the data. The interpolation degree of f(x) depends on the n data points in the low-
rank matrix subspace for each patient.                                  

We next describe the procedure for applying the polynomial to estimate the missing data. 
Given a temporal set of n data nodes (x1, y1), …, (xn, yn), the interpolation polynomial in 
Newton form is chosen to interpolate f(x) at x for estimates using the divided difference table 
and formula for the set of low-rank matrix subspaces in the patient subspace. A detailed process 
model developed by the estimation method is used to determine the conditions of the estimators 
used in the condition order degree. The condition order degree is used to find a polynomial from 
the observed values in the low-rank matrix for each variable and each patient. This is done by 
using the highest order degree obtained from the time points for each patient. The process uses 
value estimation in the degree format of the continuous value of the estimation function at time 
x(t) during [xt1,….,xtn+1] in a random data pattern. A polynomial of degree n may be written as 
fn(x) = a0 + a1x + a2x

2 +…+ anx
n, an = 0. For any n+1 data points, there is an interpolating degree 

n polynomial. When the only function consistent with the n+1 data points is the divided 
difference, the number of points used in the interpolation structure is called the order of the 
interpolation. Thus, linear interpolation, y = a0 + a1x, uses two points and is second; quadratic 
interpolation, y = a0 + a1x + a2x

2, uses three point and is third; and cubic interpolation, y = a0 + 
a1x + a2x

2 + a3x
3, uses four points and is fourth. If the number of time points for a patient 

receiving treatment is two, then the observed values in the low-rank matrix are 1 and 2. 
According to the condition of the order degree polynomial, the higher degree is used, in this case 
2, to find a polynomial fn(x), which is later used to estimate the missing value. This method 
enables for all missing values to be estimated. NFDC uses each occurring data value X(ti)obs to 
calculate a polynomial per the temporal estimation principle with the finite difference table. 
When a polynomial value is achieved, the coefficient was used to calculate for  the condition 
order degree to impute the missing temporal data X(ti)miss, regarding to the position of the value. 
The value may be before or after the resulting value, which can be in the first position, fn(x(t1)), 
or in the last position, fn(xtn). There are no additional conditions or methods, and therefore this 
method will always provide an estimate.   

The main concept of NFDC for estimation and imputation is comprised of 
1) transforming temporal data to a low dimensional subspace;  

  2) interpolating the function f(xi) to find data points for observed values and missing values;  
3) imputation in the subspace for each patient case series wherever there is a missing value. 
 

4.1 Proposed Procedure for NFDC Imputation of Temporal Medical Data 

The procedure for NFDC imputation of temporal medical data shown in Fig.1. There are 
seven steps in the proposed method, which are as listed below. 
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Fig. 1. Procedure with steps: Newton’s finite divided difference polynomial interpolation with             

condition order degree (NFDC). 
 

Step 1. Transform temporal medical data to a lower dimension for personal analysis. 
1.1. Determine the system’s input variables for a temporal data matrix by creating the matrix: 

A = [xij], i = 1, …, n, j = 1, …, n. The dataset A = {PIDxx, time, x1, x2, …., xn} is stored 
as the m × n matrix below, where PID is the patient ID number and xij are values of the 
measurement variables. 

 
 

 

 

 
1.2. Separate the matrix into patient case series. Each of the subspaces has a different 
dimension. For example, 

 
 

 
 

 

 

 
The column vectors in each subspace are sequences of measurement variables (height, BMI, 

and so on). The rows in each subspace are time points in time treatment. 

PID01 time  xi1  xi2  xi3  … xin 

PID01 time  xi1  ?   xi3  … xin 

PID01 time  xi1  xi2  xi3   … xin 

PID02 time  xi1  xi2  ?   … xin 

PID02 time  xi1  xi2   ?   … xin m × n

?  x12   x13 … x1n 
x21  x22   x23 … x2n 

2 × n

x11   x12   ?  …  x1n 
x21    ?    x23  …  x2n 
?   x32   ?  …  x3n 

x41   x42   ?  …  x4n 

4 × n 

x11   x12  x13  …  x1n 
?     x22  x23  …  x2n 

…   …   …  …  … 
xnn   xnn   ?  …  xnn 

m × n 

X-PID01 X-PID02 X-PID0n 
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x(ti) ,   =      observed values  
 

x(ti) ,   =      missing time point values 

1.3. Transpose (T) subspaces with missing values. 
 

  

  
  
 

 

 

 

 

 
In the transposed patient subspace case series, the column vectors are time points in the 

treatment, the row vectors are measurement variables (height, BMI, and so on) from patient 
information.  

 
1.4. To find the missing point values and fit curves in a low-rank matrix, transpose the 

subspace matrix, which is separated from low-rank matrix. Using the low-rank matrix, 
locate non-missing and missing values in the subspace. 

 
 

BMI 

height  

weight 

  

 
Step 2. Subspace transposed using imputation of missing values (incomplete data).     

To estimate the missing values using the interpolation polynomial, index the data points 
starting with yi = f(xi),          i = 1, 2, …, n.  

2.1. Generate a subspace data set for a patient case series with partial missing data.   
   

 
{x(t1), x(t2),….., x(tn)} 

     
Note that ti is distinct in the low-rank matrix for subspaces with missing values.    

2.2. Select the transposed subspace in each patient case for imputation using missing values. 
 

Step 3. Personal subspaces and constructing Newton’s divided difference.  
We estimated the missing data value x(ti) in the low-rank patient subspace matrix by 

computing Newton’s interpolation polynomial Xt-obs with the condition order degree in the 
recursive divided difference.  

3.1. Compute in transposed patient subspace . 
3.2. Select rows from the matrix [x(t1) x(t2) x(t3) … x(tn)]. The row gives measurement values 

at discrete points in time, t1, t2, t3, ..., tn. To find the measurement value at any point in 

t1 t2 t3 t4 

x11   x12  ?  x14 
 

x21    ?  x23 x24 
x31  x32  ?  x34 

x41  x42  ?  x44 

Span to curve fitting with low-rank 

(t)

x

X-PID0n X-PID02 X-PID01 

?  x21 

x12  x22 
x13  x23 

…  … 
x1n   x2n 

2 × n

T

x11   x21   ?  …  x41 
x12    ?    x32  …  x42 
x13   x23   ?  …  x43 

…   …  …  …  … 

x1n   x2n   ?  …  x4n 

T

4 × n

x11   ?   …  xin 
x12    x22  …  xin 

…   …  …  … 
xnn   xnn  ?   xnn 

xin   xin  …  xin 

m × n

T 
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time, use the continuous function y = f(x). This function interpolates the n+1 data points, 
so that the value of y may be estimated at any other time. For example, 

 
y at x(t) = [ ? xi1 xi2 xi3 xin]

T 
ti = [1 2 3 4] 
x(ti) = [1 2 3 4] 
y(ti) = [1 2 3 4], 

 
   where x is BMI.T 
3.3. Construct Newton’s divided difference table to generate divided differences for this set of 

row vectors in the subspace, and construct f(x) and Newton’s divided difference 
interpolation polynomial, using all rows in the transposed subspace with point values for 
imputation. Conditions for the order degree for imputing in low-rank subspaces are 
shown in the divided difference table (Table 4). 

 
Table 4. Finite divided difference table 

xi yi f(xi, xi+1) f(xi, xi+1, xi+2) f(xi, xi+1, xi+2, xi+3) f(xi, xi+1, xi+2, xi+3, … xi+n) 

x1 f1 F(x1, x2) f(x1, x2, x3) F(x1, x2, x3, x4) F(x1, x2, x3, x4, ... xn) 

x2 f2 F(x2, x3) F(x2, x3, x4) F(x2, x3, x4, x5)  

x3 f3 F(x3, x4) F(x3, x4, x5)   

x4 f4 f(x4, x5)    

 
Conditions for order degree imputation in low-rank subspace matrix using the divided 

difference table with Eqs. (5)–(8). 
Definition: The finite divided difference form of equation. 
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Condition with order degree 
 Observe treatment values at the second time point in rows in the subspace using linear 

interpolation (second degree): 
 

  
 
Observe treatment values at the third time point in rows in the subspace using quadratic 

interpolation (third degree):  
 

  
 
Observe treatment values at the fourth time point in rows in the subspace using cubic interpo-

lation (fourth degree): 

 
  

Observe treatment values at other time points in the rows in the subspace using n-th degree 
interpolation: 

 
 

 

3.4. Find a set of observed data points with a direct point (Xobs) in the patient subspace to find 
the missing values, where y(ti)obs, X(ti)obs is an indexed time point, y(ti)obs is an observed 
value in the matrix (y(ti)obs is f(x) = variable), and X(ti)obs is an observed time value. 
Given that the data points are  (ti-obs, yi-obs), i = 1, ..., n in the subspace, count the 
positions in the row with y(ti)obs at x(ti). This should contain a set with a feature and no 
missing values. 

 
t(i)     = [ 1  2  3 ]  
X(ti)obs  = [ 2  3  4 ]  
y(ti)obs  = [ 2  3  4 ]  

 
3.5. Find a set with a feature and no missing values (y(ti)miss). Find the missing data point, 

where t(i) is the time point, ymiss is a missing value in the matrix (y(ti)miss is f(x) = estimate 
value in variable), and X(ti)miss is a time point with a missing value. If values are found to 
be missing, the time point t denotes that y(ti)miss = [ ? ] are missing values.  

 
t(i)     = [ 1 ]  
X(ti)miss  = [ 1 ]  
y(ti)miss  = [ ? ]  

 
Step 4. Calculate Yobs, Ymiss and Xobs, Xmiss with finite divided difference imputation. 

4.1. Calculate X(ti)obs for the polynomial from the set of observed value features. The 

        .......)( 11213121  nnn xxxxbxxxxbxxbbxf
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divided differences table, denoted by f[x] = y(ti)obs, is defined recursively by: 
 

t(i)     = [ 1  2  3 ]  
X(ti)obs  = [ 2  3  4 ]  

       y(ti)obs  = [ 70.7  70.8  75.6]  
 
       The finite divided difference in Eqs. (5)–(8).  
 

4.2. Calculate X(t)miss from the set of missing value features:  
  

t(i)     = [ 1 ]  
X(ti)miss  = [ 1 ]  
y(ti)miss  = [ ? ]  

 
Calculate this using the values shown in the divided difference table in the Newton divided 

difference formula and the Newton form of the interpolating polynomial for interpolating f(x) at 
x(ti): 

 
 

 
 

 

 
 

 

 
Consider the condition degree by observing the value of three points using quadratic 

interpolation, that is, fn(x),  n = 3, x(ti)miss = 1: 
 

(f3(x(ti))  =  f3(1).  

 
Step 5. Use the estimate fn(x(ti)) in the missing position [X((ti) )miss ]. 
Step 6. Repeat steps 3 to 5 for next row in the patient subspace matrix. 
Step 7. Repeat for patient subspacen+1, so that results are calculated for each patient subspace 
that has no missing values.  
 
 

5. EXPERIMENTS AND RESULTS  

The performance of each imputation method was evaluated by comparing the estimated 
values with the corresponding real values in the complete subspace of a patient case series. The 
accuracy of each imputation method was evaluated by calculating the error between the 
observed values and the imputed values after the missing values had been estimated. The 
efficiency of the missing data estimation system was evaluated using the normal root mean 
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standard error (NRMSE). NRMSE measures the error between real values and estimated values 
and quantifies the accuracy of the estimated values. The Wilcoxon rank sign significance test 
was also applied [3,26].     

 
5.1 Rank Metric Normalization in a Complete Set 

Min-max normalization performs a linear transformation on the original data to normalize the 
values of each input data feature vector. Min-max normalization maps a value v from A to v’ in 
the range [new_minA, new_maxA], where the range was selected as 1 and 0, that V is the current 
value of variable x, v’ is the new value of variable x, and minA and maxA are the minimum and 
maximum values of an attribute. 

 
 
 
 

(12) 

 
The method for ranking metric normalization is as follows: 
   1) Temporal data rank normalization in a complete set. 
   2) Random missing values in one incomplete set. 
   3) Temporal incomplete data rank normalization using four methods for imputation. 
   4) Evaluation. 
 

5.2 Evaluation of a Patient in a Subspace 

5.2.1 NRMSE  

NRMSE was used to compare the accuracy of the different imputation methods. NRMSE 
measures the error between the real values and the estimated values and quantifies the accuracy. 
This means that a smaller value for the criterion indicates greater accuracy [5]. The NRMSE is 
the RMSE/root mean square deviation (RMSD) divided by the range of observed values of a 
variable, in which yt is the real value, yet is the estimated value, and n is the number of missing 
values. The formula is given by Eqs. (13) and (14). 

 
 
 
 
 

(13) 

 
 
 

(14) 

In analyzing the missing data, the cases are first ordered according to data size. The missing 
dataset is then divided into four parts with different percentages of the missing data. The 
percentage of missing data is a proportion of the mean data size, that is, p-missNo = 
(Row*Col*pct_mis)/100, where p-missNo% is the total missing data percentage. For each 
missing data pattern and each missing data mechanism, five different percentages of missing 
values (10%, 15%, 20%, 25%, and 30%) were used randomly. The results of the experiment are 

minmax XX
RMSE

NRMSE 
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(new_maxA, new_minA)+ (new_minA)
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shown in Table 5 and Fig. 2.  
 

5.2.2 Statistical significance  
We tested the significance of all missing probabilities. Each result was compared using the 

Wilcoxon signed-rank statistical significance test (W). The Wilcoxon significance test was 
performed to test the validity of the different imputation methods for temporal obesity data at the 
statistical significance level of 0.05. Under the null hypothesis, the HL statistic suggests 
evidence of a lack of model fitting (a p-value much greater than 0.05 would indicate very good 
model, while p < 0.05 reveals a poor model). The results were significant for a higher 
percentage of missing values. [26,27]. 

 
5.3 Experimental Results and Discussion 

Table 5 and Fig. 2 show the experimental results. The performance was measured with 
respect to the percentage of missing values in the data set. The accuracy of data was computed 
using the NRMSE. There were four methods used to estimate missing values, which were then 
compared with the real data set for the temporal obesity data. These pieces of data had 10%, 
15%, 20%, 25%, or 30% of the values missing. NFDC was compared with three existing 
subspace estimation techniques: k-NN, LLS, and natural cubic splines. The results are shown in 
Fig. 2. The results confirm the good performance of NFDC for estimating missing values. Of the 
four methods, NFDC method gives the smallest error. The average accuracy values for the 
methods are 14.4, 19.0, 39.4, and 358.2 for NFDC, cubic splines, k-NN, and LLS, respectively. 

 
Table 5. Results of the proposed model and original methods as shown in percentages of missing 

value   

Method 
Percentage of missing values 

Average 10% 15% 20% 25% 30% 

NFDC (proposed method) 10.4931 15.0097 13.1893 16.2048 20.5221 14.4830 
Natural cubic spline 12.2079 19.0056 17.4129 22.5382 24.1026 19.0535 
k-NN 31.623 39.017 40.6742 42.3140 43.6030 39.4463 
LLS 349.591 350.237 354.4324 367.5914 369.3242 358.2352 

NFDC=Newton’s finite divided difference polynomial interpolation with a condition order degree, k-NN=k-nearest neighbor, 
LLS=local least squares. 

 

 

Fig. 2. Comparison of normal root mean standard error (NRMSE) with missing values for the four 
methods. NFDC=Newton’s finite divided difference interpolation with a condition 
order degree, k-NN=k-nearest neighbor, LLS=local least squares. 
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Table 6. Average ranking of the p-values of temporal obesity data 

Method 
Percentage of average ranking values 

10% 15% 20% 25% 30% 
NFDC (proposed method) 0.6285 0.5900 0.4829 0.5129 0.4595 
Natural cubic spline 0.5064 0.4801 0.4653 0.5111 0.4598 
k-NN 0.0940 0.0164 0.0509    0.0516 0.5233 
LLS 0.3427 0.3646 0.3520 0.3536 0.5508 

NFDC=Newton’s finite divided difference polynomial interpolation with a condition order degree, k-NN=k-nearest neighbor, 
LLS=local least squares. 
 

Table 6 provides an average ranking of the p-values obtained using W under the hypothesis 
that the estimated value of the proposed method has acceptable accuracy. The significance of 
this finding is that NFDC from the data size (10% and 30%) when compared with the existing 
methods. The performance of NFDC is significantly better than that of the other methods. 

 
 

6. CONCLUSION  

This paper presents a new method known as, NFDC, which is based on the concept of 
estimations in each patient case series from temporal obesity data. NFDC, which uses 
polynomial interpolation, creates a new data point between given data points in each patient’s 
medical indicators related to the number of real time points. The estimation of the missing 
values is obtained by using the observed data to impute values in positions where data are 
missing with a condition order degree. Under the condition order degree, which is considered 
according to the number of observed treatment values, it can still be processed based on 
interpolation. Missing values at any time point in the temporal obesity data can be estimated in 
every subspace without other conditions or methods. The experimental results were evaluated 
using the NRMSE and Wilcoxon statistical significance test. Our proposed method has a small 
estimation error as compared with existing subspace estimation techniques, including k-NN, 
LLS, and natural cubic splines. The NRMSE results show that NFDC has the smallest amounts 
of errors and the highest significance rate.  
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