• Title/Summary/Keyword: Missile Model

Search Result 270, Processing Time 0.025 seconds

Compaction process in concrete during missile impact: a DEM analysis

  • Shiu, Wenjie;Donze, Frederic-Victor;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.329-342
    • /
    • 2008
  • A local behavior law, which includes elasticity, plasticity and damage, is developed in a three dimensional numerical model for concrete. The model is based on the Discrete Element Method (DEM)and the computational implementation has been carried out in the numerical Code YADE. This model was used to study the response of a concrete slab impacted by a rigid missile, and focuses on the extension of the compacted zone. To do so, the model was first used to simulate compression and hydrostatic tests. Once the local constitutive law parameters of the discrete element model were calibrated, the numerical model simulated the impact of a rigid missile used as a reference case to be compared to an experimental data set. From this reference case, simulations were carried out to show the importance of compaction during an impact and how it expands depending on the different impact conditions. Moreover, the numerical results were compared to empirical predictive formulae for penetration and perforation cases, demonstrating the importance of taking into account the local compaction process in the local interaction law between discrete elements.

Adaptive control to compensate the modeling error of STT missile (STT 미사일의 모델링 오차 보상을 위한 적응 제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1292-1295
    • /
    • 1996
  • This paper proposes an adaptive control technique for the autopilot design of STT missile. Dynamics of the missile is highly nonlinear and the equilibrium point is vulnerable to change due to fast maneuvering. Therefore nonlinear control techniques are desirable for the autopilot design of the missile. The nonlinear controller requires the exact model to obtain satisfactory performance. Generally a look-up table is used for the dynamic coefficients of a missile, so there must be coefficients error during actual flight, and the performance of the nonlinear controller using these data can be degraded. The proposed adaptive control technique compensates the nonlinear controller with modeling error resulting from the error of aerodynamic data and disturbance. To investigate the usefulness, the proposed method is applied to autopilot design of STT missile through simulations.

  • PDF

Ballistic Missile Tracking using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 탄도 미사일 추적)

  • Park, Sang-Hyuk;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.898-903
    • /
    • 2008
  • In most cases, the trajectory of a ballistic missile is well explained by the Kepler's laws. It implies that the remaining trajectory of the ballistic missile including its final destination can be easily predicted if the position and velocity vector of the ballistic missile at any point on its path can be exactly known. Hence, an effective tracking algorithm based on an exact radar measurement model is very important for developing Ballistic Missile Defense(BMD) system. In this paper, we address to design a nonlinear filter, Unscented Kalman Filter(UKF), to track the ballistic missile.

Missile Flyout Launch Dynamic Analysis Including Ship Motion (함정운동을 고려한 유도탄의 발사초기 동력학 해석)

  • 안진수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-49
    • /
    • 2002
  • In this paper, flyout stability of missile that is launched in inclined launcher using sabots is analyzed. To include missile bending motion during flyout, FEA model of missile is converted into eight concentrated mass and equivalent stiffness matrix. Six d.o.f ship motion that have influence on flyout stability is modeled and missile firing time is modeled as probability variable to take arbitrary ship attitude into account. Gap between missile and sabot is modeled as normal distribution probability variable and Monte Carlo simulation is performed. As results, the coriolis acceleration effects by ship motion are analyed and statistical results of missile pitch rate are shown.

Missile Flight Condition for Slip-in Booster's Safe Separation (내삽형 부스터 안전 분리를 위한 비행 조건 연구)

  • Oh, Hyun-Shik;Lee, Ho-Il;Cho, Jin;Kim, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • A mathematical model of slip-in booster separation dynamics is described. A longitudinal 3-DOF(degree of freedom) 2-body dynamic model is developed to simulate the separation dynamics. Aerodynamic models of the missile and the exposed area of booster are built. And, gas generator pushing the booster out and internal channel pressure drop are modelled. To simulate the model, it is assumed that the missile can maintain the 1g level-fight condition during the separation. With this assumption, the interaction forces between missile and booster through the separation phases: phase 0: initial, phase 1: linear translation, and phase 2: free flight motion are defined. Using the simulation, missile flight conditions for slip-in booster`s safe separation, which can be represented by Mach vs. height envelope, are suggested.

Analysis on Time Performance of Intercept System for Engagement Plan of Missile Defense System (미사일방어체계의 교전계획 수립을 위한 요격체계의 시간성능인자 분석)

  • Hong, Seong-Wan;Song, Jin-Young;Chang, Young-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.93-105
    • /
    • 2019
  • In order to establish an effective engagement plan of the missile defense system, both spatial and temporal performance analysis of the intercept system should be performed. However, research on existing missile defense systems has been mainly focused on spatial performance. In this study, time performance factors are defined through the composition and operational concept of missile defense system, and the target ballistic missile interception process is presented as integrated timeline through ballistic missile model and radar model. We also proposed an algorithm for deriving time performance. Simulation results confirm that the time performance factors can be used in the engagement planning for multi-engagement through the example of engagement planning.

Guidance law for a missile after thrust cutoff

  • Baba, Yoriaki;Kishitani, Harunobu;Takano, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.647-652
    • /
    • 1994
  • In the previous paper, we presented a new guidance law for a missile during boost phase. Thus, this paper deals with the guidance law for a missile after the thrust cutoff against an accelerating and turning target. It is essentially based on the concept of proportional navigation. Some simulation studies were performed using a three dimensional mathematical model of an air-to-air missile and the effectiveness of the guidance law presented was shown.

  • PDF

A Study on the Optimal Allocation of Korea Air and Missile Defense System using a Genetic Algorithm (유전자 알고리즘을 이용한 한국형 미사일 방어체계 최적 배치에 관한 연구)

  • Yunn, Seunghwan;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2015
  • The low-altitude PAC-2 Patriot missile system is the backbone of ROK air defense for intercepting enemy aircraft. Currently there is no missile interceptor which can defend against the relatively high velocity ballistic missile from North Korea which may carry nuclear, biological or chemical warheads. For ballistic missile defense, Korea's air defense systems are being evaluated. In attempting to intercept ballistic missiles at high altitude the most effective means is through a multi-layered missile defense system. The missile defense problem has been studied considering a single interception system or any additional capability. In this study, we seek to establish a mathematical model that's available for multi-layered missile defense and minimize total interception fail probability and proposes a solution based on genetic algorithms. We perform computational tests to evaluate the relative speed and solution of our GA algorithm in comparison with the commercial optimization tool GAMS.

IP를 이용한 패트리어트 미사일 최적배치모형

  • Lee, Jae-Yeong;Jeong, Chi-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.38-50
    • /
    • 2005
  • The current Air defense missile, Nike, will be replaced by the Patriot missile in the near future. In this paper, we developed an optimal allocation model for the Patriot missile. In order to formulate the model, we applied a set covering and If model. This model considers not only weapon's characteristics and performances but also the threat of enemy aircrafts and SCUD missiles. When we apply this model, we can find the optimal location of Patriot batteries which maximizes the kill probability of enemy aircrafts and SCUD missiles attacking vital area of our forces. This model can directly be used to the decision making for the optimal military facility allocation.

  • PDF

Adaptive Control Based on a Parametric Affine Model for Tail-Controlled Missiles (매개변수화 어파인 모델에 기반한 꼬리날개제어 유도탄의 적응제어)

  • 최진영;좌동경;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.547-555
    • /
    • 2003
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (Skid-to-Turn) missiles. We derive an analytic uncertainty model from a parametric affine missile model developed by the authors. Based on this analytic model, an adaptive feedback linearizing control law accompanied by a sliding mode control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme are demonstrated by simulation.