• Title/Summary/Keyword: Missile Dynamics

Search Result 69, Processing Time 0.035 seconds

Optimal Evasive Maneuver for Sea Skimming Missiles against Close-In Weapon System (근접방어무기체계에 대한 함대함 유도탄의 최적회피기동)

  • Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2096-2098
    • /
    • 2002
  • In this paper, the optimal evasive maneuver strategies for typical subsonic ASM(anti-ship missile) to reach its target ship with high survivability against CIWS(close in weapon system) are studied. The optimal evasive maneuver input is defined by the homing command optimizing the cost function which takes aiming errors of CIWS into account. The optimization problem for the effective evasive maneuver is formulated based on a simple missile dynamics model and a CIWS model. By means of solving the problem, a multiple hypotheses testing method is proposed. Since this method requires generation of too many hypotheses, the hypothesis-pruning technique is adopted. The solution shows that the optimal evasive maneuver is a bang-bane shaped command whose frequency is varied by the aimpoint determination strategy in CIWS.

  • PDF

Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices (오리피스 형상에 따른 발사관 내 부가추력 특성 연구)

  • Yoon, Jin-Young;Lim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

A Study on the Torque Control Method of a Hydraulic Actuation System for Measuring the Dynamic Stiffness of Missile Fin Actuators (유도무기용 날개구동기의 동적 강성 측정을 위한 유압 구동장치의 토크제어 기법에 관한 연구)

  • Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • This paper presents a torque control method of a hydraulic actuation system for measuring the dynamic stiffness of missile fin actuators. We propose a new control technique called Dual Dynamic Torque Feedback Control(DDTFC), which improves the stability of the torque control system and enables fast tracking of torque command. The developed control scheme is derived from the physical understanding based on mathematical modelling and analysis. The dynamics of hydraulic torque control servo-system is unravelled via physics-based modelling and nonparametric system identification. In order to verify the effectiveness of the method, the experiment is carried out with a test equipment for measuring the dynamic stiffness. The experiment and simulation results show that DDTFC gives stability improvement.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.

A LOS Rate Estimator for Homing Seekers with 2 Axis Gimbal System (2축 김발 호밍 탐색기를 위한 시선변화율 추정기법)

  • Whang, Ick-Ho;Hwang, Tae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1024-1030
    • /
    • 2001
  • In this paper, a horizontal LOS(line of sight) rate estimator for conventional sea skimming ASM(anti-ship missile) is proposed. A LOS rate dynamics model for a 2-axis gimbal system and the homing geometry is derived. A new LOS rate estimator is proposed by applying the Kalman filter theory to the LOS rate dynamics model. The proposed filter estimates LOS rates by taking roll motions into account. Simulation results show that the proposed filter produces smaller estimation errors than a conventional method.

  • PDF

Study on Integrated-Flight Simulation Method Using CFT Imagery (탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구)

  • Jeong, Dong Gil;Yun, Hyo Seok;Park, Jin Hyen
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • It is indispensable for a missile to track a target under the flight condition since the tracking capability affects the system performance considerably. The best way to verify the tracker's performance is flight test while it costs too much. Consequently, captive flight test or CFT has an important role in the development of a missile system. CFT, however, cannot simulate missile dynamics and is an offline and open-loop test. In this paper, we propose a new integrated-flight simulation(IFS) method using CFT imagery to overcome the limitation of synthetic image-based IFS method. This method increases the utilization of CFT's outputs and compensates the reality of imagery which lacks in the synthetic image-based IFS. Using this method make it possible to verify the system capability in various simulation modes.

Analysis of Guidance Laws for Impact Angle Control Mission of Cooperative Missiles Based on Communication Structure (협업 유도탄 간 상대 충돌 각 제어 임무에서 통신 구조에 따른 유도기법의 영향 분석)

  • Hyosang Ko;Danil Lee;Myunghwa Lee;Hanlim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • This paper applies a relative impact angle control guidance law to a communication-based multi-missile network system with uncertainties and disturbances. The multi-missile network system is represented as a transitive reduction directed acyclic graph. Furthermore, this paper introduces both centralized and decentralized guidance laws based on the graph's structure. The relationship between these guidance laws is analyzed by comparing them based on the communication structure and the presence of system noise. To analyze the effects of decentralized optimal cooperative guidance law, this paper assumes uncertainty in missile dynamics and predicted impact point information for the relative impact angle control mission. Monte Carlo simulations are conducted for various mission environments to analyze the impact of communication and its structure on the system.