• Title/Summary/Keyword: Mismatch loss

Search Result 102, Processing Time 0.029 seconds

Effect of a 3C-SiC buffer layer on SAW properties of AlN films (3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

A Study on Module-based Power Compensation Technology for Minimizing Solar Power Loss due to Shaded Area (음영지역 발생으로 인한 태양광 발전손실 최소화를 위한 모듈부착형 전력보상기술에 관한 연구)

  • Kim, Young-Baig;Song, Beob-Seong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.539-546
    • /
    • 2018
  • Recently, as the solar power generation market is rapidly increasing, interest is focused on research for minimizing the output of the solar cell module. The role of the power optimizer is important when inconsistencies occur in photovoltaic power generation. In the conventional system, centralized inverter method and microinverter method are mainly used. In this paper, we analyze the problem of power generation efficiency loss due to the incompatibility of existing system configuration methods. We also proposed a module - type power compensation method that can improve the mismatch caused by shading. The proposed module - based power optimizer is implemented and compared with the existing operation method. From the simulation result, it was confirmed that the efficiency of the proposed operation method is improved compared to the existing method.

Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes (PV 모듈 내 바이패스 다이오드 손상에 의한 열적 전기적 특성 변화 분석)

  • Shin, Woo-Gyun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • PV module is conventionally connected in series with some solar cell to adjust the output of module. Some bypass diodes in module are installed to prevent module from hot spot and mismatch power loss. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we study the thermal and electrical characteristics change of module with damaged bypass diode to easily find module with damaged bypass diode in photovoltaic system consisting of many modules. Firstly, the temperature change of bypass diode is measured according to forward and reverse bias current flowing through bypass diode. The maximum surface temperature of damaged bypass diode applied reverse bias is higher than that of normal bypass diode despite flowing equal current. Also, the output change of module with and without damaged bypass diode is observed. The output of module with damaged bypass diode is proportionally reduced by the total number of connected solar cells per one bypass diode. Lastly, the distribution temperature of module with damaged bypass diode is confirmed by IR camera. Temperature of all solar cells connected with damaged bypass diode rises and even hot spot of some solar cells is observed. We confirm that damaged bypass diodes in module lead to power drop of module, temperature rise of module and temperature rise of bypass diode. Those results are used to find module with a damaged bypass diode in system.

The Study of Method about the Multi-channel Simultaneous Measurement for Measuring the I-V Curve of Photovoltaic Array (태양광 어레이 I-V 곡선 측정을 위한 다채널 동시 측정방법에 관한 연구)

  • Park, Yu-Na;Jang, Gil-Soo;Ko, Suk-Whan;Kang, Gi-Hwan;So, Jung-hun;Jung, Young-Seok;Ju, Young-Chul;Hwang, Hye-Mi;Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.23-33
    • /
    • 2017
  • A great deal of study for loss reduction of photovoltaic system is conducted currently. It is hard to distinct the fault of photovoltaic system with the naked eye. For that reason, it is essential to repair and maintain the PV system by monitoring the system. The fault of individual modules can cause the huge loss of the entire system because of the mismatch. Therefore, the method of diagnosing the PV array is necessary by measuring the multi-channel arrays simultaneously. In this paper, it is presented the method of measuring I-V curve of multi-channel arrays simultaneously by using the charge and discharge characteristics of capacitor. Generated DC power at PV arrays is charged and discharged at the capacitors in a moment. By measuring the charged voltage and current, it is possible to diagnose of performance of PV arrays.

Cortical Deafness Due to Ischaemic Strokes in Both Temporal Lobes

  • Lachowska, Magdalena;Pastuszka, Agnieszka;Sokolowski, Jacek;Szczudlik, Piotr;Niemczyk, Kazimierz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2021
  • Cortical deafness is a clinical rarity whereby a patient is unresponsive to all types of sounds despite the preserved integrity of the peripheral hearing organs. In this study, we present a patient who suddenly lost his hearing following ischaemic infarcts in both temporal lobes with no other neurological deficits. The CT confirmed damage to the primary auditory cortex (Heschl's gyrus) of both hemispheres. Initially, the patient was unresponsive to all sounds, however, he regained some of the auditory abilities during 10 months follow up. Pure tone threshold improvement from complete deafness to the level of moderate hearing loss in the right ear and severe in the left was observed in pure tone audiometry. Otoacoustic emissions, auditory brainstem responses, and acoustic reflex findings showed normal results. The middle and late latency potential results confirmed objectively the improvement of the patient's hearing, however, after 10 months still, they were somewhat compromised on both sides. In speech audiometry, there was no comprehension of spoken words neither at 3 nor at 10 months. The absent mismatch negativity confirmed above mentioned comprehension deficit. The extensive auditory electrophysiological testing presented in this study contributes to the understanding of the neural and functional changes in cortical deafness. It presents the evolution of changes after ischaemic cerebrovascular event expressed as auditory evoked potentials starting from short through middle and long latency and ending with event-related potentials and supported by neuroimaging.

Cortical Deafness Due to Ischaemic Strokes in Both Temporal Lobes

  • Lachowska, Magdalena;Pastuszka, Agnieszka;Sokolowski, Jacek;Szczudlik, Piotr;Niemczyk, Kazimierz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2021
  • Cortical deafness is a clinical rarity whereby a patient is unresponsive to all types of sounds despite the preserved integrity of the peripheral hearing organs. In this study, we present a patient who suddenly lost his hearing following ischaemic infarcts in both temporal lobes with no other neurological deficits. The CT confirmed damage to the primary auditory cortex (Heschl's gyrus) of both hemispheres. Initially, the patient was unresponsive to all sounds, however, he regained some of the auditory abilities during 10 months follow up. Pure tone threshold improvement from complete deafness to the level of moderate hearing loss in the right ear and severe in the left was observed in pure tone audiometry. Otoacoustic emissions, auditory brainstem responses, and acoustic reflex findings showed normal results. The middle and late latency potential results confirmed objectively the improvement of the patient's hearing, however, after 10 months still, they were somewhat compromised on both sides. In speech audiometry, there was no comprehension of spoken words neither at 3 nor at 10 months. The absent mismatch negativity confirmed above mentioned comprehension deficit. The extensive auditory electrophysiological testing presented in this study contributes to the understanding of the neural and functional changes in cortical deafness. It presents the evolution of changes after ischaemic cerebrovascular event expressed as auditory evoked potentials starting from short through middle and long latency and ending with event-related potentials and supported by neuroimaging.

Real-time Adaptive PID Temperature Control that limits Overshoot (오버슈트를 제한하는 실시간 적응형 PID 온도제어)

  • Jin Moon Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.957-966
    • /
    • 2023
  • In this paper, we propose a new real-time adaptive PID temperature control technique. This is a technique that prevents overshoot by introducing a model that represents the control object. To prevent excessive integration that causes overshoot, integral control adjusts the integral gain to track the heat loss of the model in real time. In the conventional PID control, the integration was dependent on proportional control and the gain was fixed to a constant. As a result, applying two gains that mismatch each other could cause excessive overshoot. However, the proposed adaptive control actively eliminates overshoot so that the integral control amount does not always exceed the heat loss. The cause of overshoot in PID control is integration. Basically, proportional control does not cause overshoot. Therefore, according to the proposed technique, adaptive PID control without the need for tuning experiments can be realized.

Thumb Tip Reconstruction with Subcutaneous Pocket Graft - 2 Cases Report - (피하 주머니 이식술을 이용한 수부 무지 첨부 재건술 - 2예 보고 -)

  • Lee, Young-Keun;Moon, Young-Jae;Lee, Jun-Mo
    • Archives of Reconstructive Microsurgery
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • Purpose: The subcutaneous pocket graft of the thumb tip amputation across or proximal to the lunula is chosen in case of impossible microvascular anastomosis and in patient who strongly desired to preserve the thumb tip after failed replantation. Materials and Methods: Two patients who underwent a subcutaneous pocket graft for a thumb tip reconstruction between August 2008 and November 2009 were reviewed retrospectively. They were all males with a mean age at the time of surgery of 48 years and had sustained complete thumb tip amputations across or proximal to the lunula. In one case, the microsurgical replantation was not feasible and the other one revealed arterial insufficiency at the 7th day after microsurgical replantation. Results: Authors had experienced 2 cases of flaps which survived completely. The results of sensibility was good, the range of motion at interphalangeal joint and tip to tip pinch was acceptable and color mismatch and loss of thumb finger nail was unacceptable after more than 1 year follow up with conventional successful thumb tip replantation. Conclusion: The subcutaneous pocket graft could be chosen in thumb tip amputation in case of impossible microvascular anastomosis as well as who strongly desires to preserve thumb tip after failed replantation.

  • PDF

A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation

  • Cui, Wei;Yan, Wei;Lee, Wei-Jen;Zhao, Xia;Ren, Zhouyang;Wang, Cong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The increasing of wind power penetration level presents challenges in classical optimal reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. This paper proposes a two-stage stochastic programming model for ORPD by considering the uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the schedule of compensators will be determined in the first-stage while accounting for the costs of adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and generator in the second-stage will compensate the mismatch caused by the first-stage decision. The objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the proposed method.

Three novel germline mutations in MLH1 and MSH2 in families with Lynch syndrome living on Jeju island, Korea

  • Kim, Young-Mee;Choe, Chang-Gyu;KimCho, So-Mi;Jung, In-Ho;Chang, Won-Young;Cho, Moon-Jae
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.693-697
    • /
    • 2010
  • Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.