• Title/Summary/Keyword: Mismatch Error

Search Result 155, Processing Time 0.031 seconds

A new image rejection receiver architecture using simultaneously high-side and low-side injected LO signals (하이사이드와 로우사이드 LO 신호를 동시에 적용하는 새로운 이미지 제거 수신기 구조)

  • Moon, Hyunwon;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose a new image rejection receiver architecture using simultaneously the high-side and low-side injected LO signals. The proposed architecture has a lower noise figure (NF) performance and a higher linearity characteristic than the previous receiver architecture using a single LO signal. Also, the proposed receiver shows a higher IRR performance about 6dB than that of the previous Weaver image rejection architecture even though the same gain and phase errors between I-path and Q-path exist. To verify these characteristics, we derive an IRR formular of the proposed architecture as a function of mismatch parameters. And we demonstrate its formular's usefulness through the system simulation. Therefore, the proposed architecture will be widely used to implement the image rejection receiver due to its higher IRR performance.

Design of Color Matching Filters and Error Analysis in Colorimetric Measurement of LCD Flat Panel Display Using the Filters (등색함수 필터의 설계와 이를 이용한 LCD 평판 디스플레이의 색채 측정에 대한 오차 분석)

  • Jeon, Ji-Ho;Jo, Jae-Heung;Park, Seung-Nam;Park, Chul-Woung;Lee, Dong-Hoon;Jung, Ki-Lyong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Filter colorimeters have a set of spectral bands for which spectral responsivity is the same as the color matching function defined by CIE (Commission Internationale de I'Eclairage). We have designed a set of color matching function filters denoted by $\bar{x}-filter,\;\bar{y}-filter,\;and\;\bar{z}-filter$. Because the $\bar{x}-function$ has two transmission bands, two $\bar{x}-filters$ are designed to cover the $\bar{x}-function$. To design the filters, we developed a nonlinear least square fit program which determines the thickness of the color glasses by minimizing its spectral mismatch value ($f{_1}'$) to below 3 %. The design has been validated by fabrication of the $\bar{y}-bar$ filter, of which $f{_1}'$ was measured to be 2.8 %. Considering a LCD flat panel display as a device under test, we have calculated the systematic error of the colorimetric measurement using the designed filters.

Analysis of TTD Phase Delay Error and Its Effect on Phased Array Antenna due to Impedance Mismatch (위상 배열 안테나 임피던스 부정합에 따른 실시간 지연회로의 위상 지연 오차 및 영향 분석)

  • Yoon, Minyoung;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.828-833
    • /
    • 2018
  • It is well known that reflected waves and resonance affect phase distortion. In addition, phase delay can be distorted by antenna impedance. In this study, we analyze the phase delay variation caused by the antenna impedance, considering mutual coupling effects. In addition, we confirm the beam steering characteristics. When was -10 dB and -7 dB, the maximum phase delay error was $18.5^{\circ}$ and $26.5^{\circ}$, respectively. The Monte Carlo simulation with an eight-element linear array antenna demonstrated that the RMS error of the beam steering angle ranged from $0.19^{\circ}$ to $0.4^{\circ}$, and the standard deviation ranged from $0.14^{\circ}$ to $0.33^{\circ}$ when the beam steering angle was in the range of $0^{\circ}$ to $30^{\circ}$, with the uniformly distributed phase error of $18.5^{\circ}$ and $26.5^{\circ}$. The side lobe level increased from 0.74 dB to 1.21 dB by the phase error from the theoretical value of -12.8 dB, with a standard deviation of 0.31 dB to 0.51 dB. This is verified by designing an eight-element spiral array antenna.

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.

Design of the Fuzzy Logic Cross-Coupled Controller using a New Contouring Modeling (새로운 윤곽 모델링에 의한 퍼지논리형 상호결합제어기 설계)

  • Kim, Jin-Hwan;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper proposes a fuzzy logic cross-coupled controller using a new contouring modeling for a two-axis servo system. The general decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties. The cross-coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the conventional cross-coupled controllers cannot overcome friction, backlash, and parameter variations. Also since, it is difficult to obtain an accurate mathematical model of multi-axis system, here we investigate a fuzzy logic cross-coupled controller of servo system. In addition, new contouring error vector computation method is presented. The experimental results are presented to illustrate the performance of the proposed algorithm.

  • PDF

SNR-based Weight Control for the Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filtering (공간 필터와 결합된 음성 왜곡 가중 다채널 위너 필터에서의 신호 대 잡음 비에 의한 가중치 결정 방법)

  • Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.455-462
    • /
    • 2013
  • This paper introduces the Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filter (SP-SDW-MWF) for multi-microphone noise reduction and proposes a method to determine the speech distortion weights. The SP-SDW-MWF is known as a robust noise reduction algorithm against the error caused by the mismatch in microphones. The SP-SDW-MWF adopts weights which determine the amount of noise reduction at the expense of introducing speech distortion in the noise-suppressed speech. In this paper, we use the error of power spectral density between the estimated signal and the desired signal as the evaluation measure. Thus the a priori SNR is used to control the speech distortion weights in the frequency domain. In the experimental results, the proposed method yields better result in terms of MFCC distortion compared to the conventional method.

Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production (고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-42
    • /
    • 2013
  • This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

Improvement in Image Rejection of Multi-Port Junction-based Direct Receivers (다중 접합 기반 수신기의 영상 제거비 평가 및 향상 방법)

  • Park, Hyung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.43-48
    • /
    • 2012
  • This paper presents an iterative single-frequency continuous-wave signal-based I/Q regeneration method for improving image-rejection performance of multi-port junction-based direct receivers (MPDRs). This paper analyzes I/Q regeneration in MPDRs as I/Q mismatch compensation for direct conversion receivers. Based on the analysis, this paper evaluates the accuracy of I/Q regeneration in terms of the image-rejection ratio (IRR). The proposed method improves the IRR performance more than 20 dB compared to existing I/Q regeneration methods. Simulation results show that MPDRs using the proposed method can achieve an IRR of more than 70 dB, and that the bit error rate performances are almost the same as those of conventional coherent demodulators, even in fading channels.