Abstract
This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.
본 논문에서는 고품질의 3D 콘텐츠 제작에 있어 입체피로를 최소화하기 위한 영상의 수직시차 교정방법으로, 베이지안 접근방식을 적용한 사진측량기반의 강인 편위수정 기법을 제안하고자 한다. 영상의 수직시차 제거 과정은 크게 기하추정 단계와 에피폴라 변환 단계로 구성된다. 본 논문에서는 기하추정을 위해 사진측량에서 널리 활용되고 있는 공면조건 기반의 상대표정 알고리즘을 적용한다. 이때 상대표정 알고리즘에는 자동 정합점 추출에 따른 오정합과 위치오차에 강인성을 확보하기 위해 제약조건을 도입한 베이지안 접근방식을 적용하고자 하며, 이를 바탕으로 수행되는 에피폴라 변환에는 영상의 왜곡과 원 영상 대비 변형을 최소화하기 위한 공선조건기반의 중심투영변환기법을 적용하고자 한다. 알고리즘의 성능검증을 위한 비교 알고리즘으로, 기하추정에는 일반적인 상대표정 알고리즘과 컴퓨터비전분야의 8점 알고리즘 및 스테레오 캘리브레이션 기법이 사용되었으며, 에피폴라 변환에는 Hartley 방법과 Bouguet 방법이 사용되었다. 실험결과는 제안 알고리즘의 높은 정확도와 여러 오차요인들에 대한 강인성, 그리고 최소화된 영상변형의 결과를 보여주었다.