• 제목/요약/키워드: Misalignment Angle

검색결과 47건 처리시간 0.021초

정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토 (Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment)

  • 송애희;최성필;김선진
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

자려 평형 틸팅 패드 스러스트 베어링의 정렬불량에 따른 베어링 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Misaligned Self-equalizing Tilting Pad Thrust Bearing)

  • 송애희;조현준;최성필;김선진
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.27-33
    • /
    • 2020
  • Self-equalizing tilting pad thrust bearings are usually employed in turbomachines to achieve high stability and reliability. A tilting pad bearing can incorporate self-equalizing links to handle the misalignment between the bearing and the thrust collar. In this popular design method, the pads sit on the upper-level plates and the lower-level plates stay on the retainer base. With misalignment, the pads that are heavily loaded are pushed down. Consequently, the link pushes up the pads on the opposite side, keeping the bearing surface parallel to the thrust collar surface. The self-equalizing link is used to handle the misalignment from the thermal and mechanical effects. In this study, the experimental investigation deals with the performance of self-equalizing tilting pad thrust bearings. The test rig for evaluating the performance of bearing is developed which can control the misalignment angle. Simultaneous measurements are taken for the force acting on each pad. Pad metal temperature and oil film thickness are functions of the shaft speed, bearing load, misalignment angle, and design of leveling plates. The effect of misalignment on bearing performance is discussed. The results demonstrate that the load on each pad depends on the test conditions(especially misalignment angle), and the load influences the performance of bearings.

NHC/ZUPT의 장착 비정렬 추정 칼만필터 설계 및 성능분석 (Design and Performance Analysis of NHC/ZUPT Kalman Filter with Mounting Misalignment Estimation)

  • 박영범;김갑진;박준표
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.636-643
    • /
    • 2009
  • NHC means that the velocity of the vehicle in the plane perpendicular to the forward direction is almost zero. The main error source of NHC is the mounting misalignment which is the difference between the body frame of a land vehicle and the sensor frame of an inertial measurement unit. This paper suggests new NHC algorithm that can reduce position errors by real-time estimation of mounting misalignment. Then NHC/ZUPT integrated land navigation system is designed and its performances are analyzed by simulations with van test data. Simulation results show that the proposed NHC/ZUPT land navigation system improves navigation accuracy regardless of misalignment angle and is very useful when SDINS operates stand-alone for land vehicle navigation with large mounting misalignment.

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

홀센서를 이용한 모노레일 PMSM 견인전동기의 벡터제어 (Vector control of Monorail PMSM traction motor using the hall-effect sensor)

  • 손동혁;김명수;최다운;조윤현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1366-1370
    • /
    • 2010
  • This paper supposes the vector control algorithm to estimate the rotor position of permanent magnet synchronous traction motor using the hall-effect sensor. The hall-effect provides 60 electrical degrees resolution in rotor position sensing and it is very low resolution. The algorithm makes resolution high as optical encoders or electromagnetic resolver. If necessary, the reference rotor position angle is controlled by adjusting the variable. When a rotor position sensor such as either a optical encoder or a electromagnetic resolver is misalignment, it is useful to align with those. The method on adjusting the reference rotor position angle can compensate for misalignment error degrees by 60 electrical degrees.

  • PDF

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널 베어링의 마모 해석 - Part I: 마모발생 가능영역에서의 유막 변화 연구 (Wear Analysis of Journal Bearings in a Misaligned Shaft During Motoring Start-up and Coast-down Cycles - Part I: Study on the Change in Oil Film Thickness at Potential Wear Regions)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.153-167
    • /
    • 2017
  • The aim of this study is to find the change in trend in the eccentricities of two journal bearings supporting the crankshaft of a single cylinder engine and the degree of misalignment of the shaft. We analyze the change in oil film thickness considering the wear scar under mixed-elasto-hydrodynamic lubrication regime at potential wear regions. For this, we first calculate the central eccentricities of the two journal bearings by using the mobility method. Then we calculate the outer end eccentricity by using the geometry of the bearings. Further, the tilting angle and degree of misalignment of the shaft are calculated by using the eccentricities of the two bearings. We show that the eccentricity of bearing #1, on which higher load is applied, increases at the beginning of the start-up cycle and during the coast-down cycle. However, the eccentricity of bearing #2, on which lower load is applied, decreases at the beginning of the start-up cycle and increases during the coast-down cycle. From the results of the analysis of oil film thickness, we show that the mixed-elasto-hydrodynamic lubrication regime for a misaligned shaft is at the initial stages of the start-up cycle for both bearing #1 and #2 and at the final stage of the coast-down cycle for only bearing #1.

기계평면시일의 동적 불안정성에 관한 연구 (On the dynamic instability analysis of mechanical face seals)

  • 김청균;서태석
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1509-1514
    • /
    • 1990
  • 본 연구에서는 비압축성 유체가 온도의 영향을 받아 변화하는 경우에 대한 시 일링 간극내에서의 압력분포를 유한차분법을 이용하여 해석하였다. 여러기서 얻어진 결과를 이용하여 시일의 축력과 모멘트를 해석함으로써 시일의 동적 불안정성에 대하 여 논하였다. 이 때 기계평면시일의 형상은 코닝이 있고, 시일의 중심축이 경사진 경우를 고려하였다.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • 제40권1호
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

Numerical estimation of errors in drop angle during drop tests of IP-Type metallic transport containers for radioactive materials

  • Lim, Jongmin;Yang, Yun Young;Lee, Ju-chan
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1878-1886
    • /
    • 2021
  • For industrial package (IP)-type transport containers for radioactive materials, a free drop test should be conducted under regulatory conditions. Owing to various uncertainties observed during the drop test, errors in drop angles inevitably occur. In IP-type metal transport containers in which the container directly impacts onto a rigid target without any shock absorbing materials, the error in the drop angle due to a slight misalignment makes a significant difference from the ideal drop. In particular, in a vertical drop, the error in the drop angle causes a strong secondary impact. In this paper, a numerical method is proposed to estimate the error in the drop angle occurring during the test. To determine this error, an optimization method accompanying a computational drop analysis is proposed, and a surrogate model is introduced to ensure calculation efficiency. Effectiveness of the proposed method is validated by performing the verification and comparison between the test and the analysis applied with the drop angle error.

High-degree Cubature Kalman Filtering Approach for GPS Aided In-Flight Alignment of SDINS

  • Shin, Hyun-choel;Yu, Haesung;Park, Heung-won
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.181-186
    • /
    • 2015
  • A High-degree Cubature Kalman Filter (CKF) is proposed to deal with the Strapdown Inertial Navigation System (SDINS) alignment problem. In-flight Alignment (IFA) is an effective method to compensate for attitude errors of the navigation system. While providing precise attitude error compensation, however, the external source aided alignment often creates a nonlinear filtering problem caused by a large misalignment angle. Introduced recently, Cubature Kalman Filter is a suitable technique for various nonlinear problems. In this paper, a higher degree CKF is applied to this accuracy-is-everything SDINS IFA problem. The simulation results show that the proposed technique outperformed a traditional nonlinear filter in terms of precision and alignment time.