
JPNT 4(4), 181-186 (2015)
http://dx.doi.org/10.11003/JPNT.2015.4.4.181

Copyright © The Korean GNSS Society

JPNT Journal of Positioning,
Navigation, and Timing

http://www.gnss.or.kr   Print ISSN: 2288-8187   Online ISSN: 2289-0866

1. INTRODUCTION

In modern aerospace applications, a Strapdown 

Inertial Navigation System (SDINS) provides the position, 

velocity and attitude of the vehicle, which are critical 

to a mission’s success. The accuracy of the navigation 

information depends on the calculated attitude between 

body and navigation frame during the alignment process. 

In-Flight Alignment (IFA) is an approach that determines 

and compensates the attitude with the help of external 

aiding sources, such as Global Navigation Satellite System 

(GNSS). Unlike the initial self-alignment, it doesn’t require 

the vehicle to be in a stationary state. Fig. 1 shows the 

characteristics of SDINS, GNSS and aided navigation. Due 

to the integration involved in SDINS, it has tendency of 

divergence over time, while GNSS output is bounded with 

instant position errors. IFA incorporates the advantages 
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of each system, making the navigation more accurate and 

stable.

If coarse alignment is performed during flight or under 

disturbances, the uncertainty of the angular body rate and 

acceleration may prevent a precise determination of the 
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attitude (Yu et al. 1999). The initial attitude misalignment 

angle can be large in such cases, causing the IFA problem 

to be nonlinear and making it inappropriate to apply the 

small angle approximation rule to the SDINS error model 

(Salychev 2004). The heading misalignment of the vehicle is 

likely to be large compared to the other two attitude angles, 

providing grounds for a large heading misalignment model 

proposed in Yu et al. (2012). When misalignments are large, 

the navigation error equations become nonlinear due to 

the included sinusoidal functions and couplings. Linear 

filters are not suitable for such cases, since a linear filter 

applied for linearized nonlinear problems would result in 

an inaccurate estimation.

Cubature Kalman Filter (CKF) was introduced by 

Arasaratnam & Haykin (2009), and was proposed as 

a systematic solution for nonlinear systems with high 

dimensionality. Although several nonlinear filtering 

approaches existed prior to CKF, such as EKF and UKF, they 

had disadvantages due to their characteristics. EKF adopts 

Taylor series approximation in order to linearize nonlinear 

problems, leading to inaccuracy if the system has severe 

nonlinearity. Promising estimation accuracy as there is 

no linearization, UKF captures the sigma points from the 

mean and covariance through Unscented Transformation 

and propagates them through the nonlinear state equations 

itself. However, it suffers from the curse of dimensionality, 

as the weight is concentrated into sigma point of its mean 

if the dimensionality of the state is relatively high. On the 

other hand, CKF uses a spherical-radial rule, guaranteeing 

numerical accuracy and convenient extendibility for high 

dimensional problems. Higher order CKF was studied 

more recently by other researchers, who expected an 

enhancement in estimation precision. Jia et al. (2013) 

proved that the 5th order CKF has increased accuracy with 

moderate computation cost over other nonlinear filters 

through a nonlinear target tracking problem. Zhang et 

al. (2013) applied this filter to initial self-alignment of the 

navigation system in a stationary base, proving the precision 

of high-degree CKF over third-ordered CKF. 

The high-degree CKF is proposed in this paper to deal 

with the nonlinear IFA problem of large misalignment 

model of SDINS. The 5th order CKF was modified for the 

problem and tested through 6 Degrees-of-freedom (DOF) 

simulation. The result shows that the proposed algorithm 

is advantageous compared to other nonlinear filters in 

terms of accuracy and convergence time. This paper is 

organized as follows. In Section 2, an IFA problem with a 

large misalignment model is described. The proposed high-

degree CKF algorithm is presented in Section 3. Simulation 

method and result is explained in Section 4, and the 

conclusion follows in Section 5.

2. SDINS IFA ERROR MODEL

A general SDINS error model with a large misalignment 

angle for the IFA problem is described in this Section. 

Unlike the SDINS large heading attitude model of Yu et al. 

(2012), level axis attitude errors were also considered to be 

large in this paper assuming poor initial coarse alignment. 

Throughout this paper, an East-North-Up coordinate is 

applied. Position (δp), velocity (δvn) and attitude (Φ) of each 

axis error models were used for the filter state variables. 

That is,
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where the spherical earth model with radius Re is assumed. 
Velocity and attitude errors are given for the order of east, north and up, respectively. 
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Here, matrix I implies the 3rd dimensional identity 

matrix, f n = Cn
b ab is the specific force in navigation frame, 

measured acceleration on body frame ab= [ax ay az]
T, Cn

b  is 

the calculated Directional Cosine Matrix(DCM) between 

body frame and navigation  frame, wn
ie = [0 Ωcosφ Ωsinφ]

T is earth rate for each axis and its error δwn
ie = [0 -Ωsinφδφ 

-Ωcosφδφ]T where the angular rate of the Earth Ω given in 
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of the state and the measurement Ck: 

 (8)

ei denotes a unit vector, and

 

1

2 31
2 2

2 231
2 2

2 23 1
2 2

2 23 1
2 2

1 0 1
2,3, , 1

2
2, , 2 1

2 2, , 1

2, , 1
3

2, , 1

2, , 2 1

n

i

i

i

i

i

i

st i
e i n

nd
e i n n

i n n ns
i n n n ns

rd
s i n n n n

s i n n n













 
   
    


    


    
    

   (8) 

ei denotes a unit vector, and 

, , , 1,2,
2

, , , 1,2,
2

j l
i

j l
i

e e
s j l j l n

e e
s j l j l n






  


  

 

Finally, the weight of each cubature point classes, 

2

2

2
2

4
2( 2)

21
( 2)

1 : , 1
2 : , 2, , 2 1

3 : , 2 2, , 2 1

n
n

i n

n

st i
w nd i n

rd i n n








   


  

 

Propagate the cubature points through the process dynamics: 
 ( ) ( ) 2

1
ˆ , 1,2, 2 1i i

k kX f X i n      (9) 

Compute the predicted mean km  and the covariance kP  

 

     

2

2

2 1

1

2 1

1
1

ˆ

ˆ ˆ

n
i

k i k
i

n Ti i
k i k k k k k

i

m w X

P w X m X m Q







  






   




   (10) 

3.2 Update 
 
Form the cubature points: 

      22 , 1,2, 2 1i i
k k kX m n P i n          (11) 

The cubature points  i  are defined in Eq. (8). 
Propagate the points through the linear observation model: 

    2

6 6 6 ( 6)

ˆ , 1,2, 2 1

0

i i
k k

n

Y H X i n

H I



  

   

   
    (12) 

Compute the predicted mean μk, the covariance of the measurement Sk, and the cross covariance 
of the state and the measurement Ck: 

Finally, the weight of each cubature point classes,

 

1

2 31
2 2

2 231
2 2

2 23 1
2 2

2 23 1
2 2

1 0 1
2,3, , 1

2
2, , 2 1

2 2, , 1

2, , 1
3

2, , 1

2, , 2 1

n

i

i

i

i

i

i

st i
e i n

nd
e i n n

i n n ns
i n n n ns

rd
s i n n n n

s i n n n













 
   
    


    


    
    

   (8) 

ei denotes a unit vector, and 

, , , 1,2,
2

, , , 1,2,
2

j l
i

j l
i

e e
s j l j l n

e e
s j l j l n






  


  

 

Finally, the weight of each cubature point classes, 

2

2

2
2

4
2( 2)

21
( 2)

1 : , 1
2 : , 2, , 2 1

3 : , 2 2, , 2 1

n
n

i n

n

st i
w nd i n

rd i n n








   


  

 

Propagate the cubature points through the process dynamics: 
 ( ) ( ) 2

1
ˆ , 1,2, 2 1i i

k kX f X i n      (9) 

Compute the predicted mean km  and the covariance kP  

 

     

2

2

2 1

1

2 1

1
1

ˆ

ˆ ˆ

n
i

k i k
i

n Ti i
k i k k k k k

i

m w X

P w X m X m Q







  






   




   (10) 

3.2 Update 
 
Form the cubature points: 

      22 , 1,2, 2 1i i
k k kX m n P i n          (11) 

The cubature points  i  are defined in Eq. (8). 
Propagate the points through the linear observation model: 

    2

6 6 6 ( 6)

ˆ , 1,2, 2 1

0

i i
k k

n

Y H X i n

H I



  

   

   
    (12) 

Compute the predicted mean μk, the covariance of the measurement Sk, and the cross covariance 
of the state and the measurement Ck: 

1-2) Propagate the cubature points through the process 

dynamics:

Fig. 2. GPS aided SDINS in-flight alignment filter.
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Compute the Kalman gain Kk, the filtered state mean mk and the covariance Pk, conditional on 
the measurement yk: 
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4. SIMULATION & RESULT 

 
The 6DOF simulation was set as follows. The flight vehicle suffered from misalignment 

angle due to insufficient initial alignment, which was particularly large on the heading angle. In 
the early stage of the simulation, GPS was not available for 120 seconds and the misalignment 
affected the SDINS velocity and position calculation. The conditions for the simulation are 
described in Table 1. The GPS reference signal was recovered at t = 121 [sec], and the IFA 
filtering began. Figs. 3 and 4 show the position and velocity errors of the simulated vehicle. 
After the recovery of the aid signal, those errors vanished immediately. However, calibration of 
the misalignment angle took more time, and the performance and time consumed were different 
depending on the filtering algorithms. 

Here, two separate simulations were presented in order to show the effectiveness of the high 
order CKF compared to 3rd order CKF, the special case of UKF. Table 2 shows the initial 
misalignment conditions for the simulations on each axis. Case 1 in Table 2 is the remaining 
attitude error when initial alignment was unsuccessful, and case 2 has a particularly large 
misalignment on the heading angle. The attitude errors were investigated through 100-run of 
Monte-Carlo simulations to check the remaining error after the IFA filter estimation. 

In Figs. 5 and 6, both UKF and high-degree CKF estimated the attitude of the vehicle 
effectively, and the remaining errors were clearly decreased on every axis. Figs. 7 and 8, 
however, with a significantly large initial heading attitude error, made the convergence 
characteristic of the filter worse. The converging error bounced back at t = 160 [sec] due to a 
sudden change in the vehicle rolling motion. It kept its error until t = 300 [sec], when the error 
converged due to the increase of the observability from the large back-to-turn motion. The 
simulated vehicle motion is shown in Fig. 9. The result of the 6DOF simulation is summarized in 
Fig. 10 and Table 3. The filtering performances of the algorithms were similar for case 1 with 
low heading error. With relatively large heading misalignment, however, the heading estimation 
of the 5th CKF was 13.9% more accurate than UKF by the end of the simulation at t = 600 [sec]. 
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alignment, which was particularly large on the heading 

angle. In the early stage of the simulation, GPS was not 
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signal was recovered at t = 121 [sec], and the IFA filtering 

began. Figs. 3 and 4 show the position and velocity errors of 

the simulated vehicle. After the recovery of the aid signal, 

those errors vanished immediately. However, calibration 

of the misalignment angle took more time, and the 

performance and time consumed were different depending 

on the filtering algorithms.

Table 1.  Simulation condition.

IMU
GPS

Accelerometer Gyro

Bias error
Scale factor

150 [ug]
100 [ppm]

0.02 [deg/h]
100 [ppm]

Position error
Velocity error

8 [m]
0.2 [m/s]

IFA filter conditions

Process noise  
covariance matrix

Q =  diag{0, 0, (0.15 m)2, (0.003 m/s)2, (0.003 m/s)2,  
 (0.003 m/s)2,  (0.00005 deg)2, (0.00005 deg)2, 
 (0.00005 deg)2}

Measurement 
noise covariance 
matrix

R =  diag{(1/Re)
2, (1/Re)

2, (2 m)2, (0.01 m/s)2, (0.01 m/s)2,  
 (0.01 m/s)2}

Initial error 
covariance matrix

P0 =  diag{(10000 m)2, (10000 m)2, (30 m)2, (100 m/s)2, 
 (100 m/s)2,  (3 m/s)2, (5.73 deg)2, (5.73 deg)2, 
 (17.19 deg)2}

Fig. 3. Position error of the flight vehicle.

Fig. 4. Velocity error of the flight vehicle.
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Here, two separate simulations were presented in order to 

show the effectiveness of the high order CKF compared to 3rd 

order CKF, the special case of UKF. Table 2 shows the initial 

misalignment conditions for the simulations on each axis. 

Case 1 in Table 2 is the remaining attitude error when initial 

alignment was unsuccessful, and case 2 has a particularly large 

misalignment on the heading angle. The attitude errors were 

investigated through 100-run of Monte-Carlo simulations to 

check the remaining error after the IFA filter estimation.

In Figs. 5 and 6, both UKF and high-degree CKF estimated 

the attitude of the vehicle effectively, and the remaining 

errors were clearly decreased on every axis. Figs. 7 and 8, 

however, with a significantly large initial heading attitude 

error, made the convergence characteristic of the filter 

worse. The converging error bounced back at t = 160 [sec] 

due to a sudden change in the vehicle rolling motion. It kept 

its error until t = 300 [sec], when the error converged due to 

the increase of the observability from the large back-to-turn 

motion. The simulated vehicle motion is shown in Fig. 9. The 

result of the 6DOF simulation is summarized in Fig. 10 and 

Table 3. The filtering performances of the algorithms were 

similar for case 1 with low heading error. With relatively large 

heading misalignment, however, the heading estimation of 

the 5th CKF was 13.9% more accurate than UKF by the end of 

the simulation at t = 600 [sec].

5. CONCLUSIONS

High-degree CKF is proposed in this paper to deal with the 

Table 2.  Initial misalignment angle.

Attitude error [mrad] Horizontal axis Vertical axis
Case 1
Case 2

100
100

300
1000

Fig. 5. Level attitude error of case 1.

Fig. 6. Heading attitude error of case 1.

Fig. 7. Level attitude error of case 2.

Fig. 8. Heading attitude error of case 2.

Table 3.  Remaining heading error.

Heading error [deg] UKF 5th CKF
Case 1
Case 2

0.0081
0.0222

0.0074
0.0195



186    JPNT 4(4), 181-186 (2015)

http://dx.doi.org/10.11003/JPNT.2015.4.4.181

large misalignment IFA filtering problem. Poor self-alignment 

and unavailability of external sensors may result in large 

horizontal and vertical attitude error, resulting in low grade 

navigation information for the mission. The navigation error 

model including those large attitude errors was considered 

in this paper. The model was specifically built for the large 

misalignment simulation, and the adaptation to the actual 

SDINS needs to be discussed in future research. Two nonlinear 

filters were compared for different initial misalignments to 

show the effectiveness of the 5th CKF. Compared to UKF, the 

high ordered CKF showed more accurate estimation and faster 

convergence of the attitude angle.
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Fig. 10. Remaining heading error of case 1 and 2.

Fig. 9. Simulated vehicle motion.


