• Title/Summary/Keyword: Mirror System

Search Result 837, Processing Time 0.023 seconds

A Study on the Mirror Surface Finishing System Using Micro Abrasive Film (마이크로 연마 필름을 이용한 경면 가공 시스템에 관한 연구)

  • Kim, Hong-Bea;Kim, Ki-Soo;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.68-74
    • /
    • 1997
  • The surface finishing system using the micro abrasive film was designed and manufactured to make the mirror surface of the cylindrical workpices. An experimental study of srface finishing was carried out to investigate the performance of mirror surface finishing system. The surface roughness value of stainless steel was about 0.2 .approx. 0.25 .mu. m Rmax, 0.02 .approx. 0.04 .mu. m Ra, using abrasive grain size of 12, 9 .mu. m. The surface roughness value of chrome coated workpiece was about 0.07 .approx. 0.11 .mu. m Ra using abrasive grain size 3 .mu. m. In the same condition, the chrome coated workpiece has obtained better surface roughness charateristics than the one of stainless steel.

  • PDF

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

The Change of Mu Rhythm during Action Observation in People with Stroke (동작관찰 시 뇌졸중 환자의 뮤리듬 변화)

  • Yun, Tae-Won;Lee, Moon-Kyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.3
    • /
    • pp.361-368
    • /
    • 2011
  • Purpose : The aims of this study was to identify the activation of the mirror neuron system during action observation in people with stroke and the difference between left hemisphere and right hemisphere and to provide possibility of the use of action observation as a clinical method for improving motor function after stroke. Methods : Seventeen participants were asked to observe 3 different stimulation conditions for 80 seconds. A 30 second rest period was given between stimulations. Electroencephalogram(EEG) signals from electrodes on the participant's scalp were recorded during action observation. The activation of the mirror neuron system(MNS) between the picture observation condition and action observation condition was compared with a paired t-test. An independent t-test was used to compare difference between C3 and C4 on the activation of the mirror neuron system in the action observation condition. Results : Result of paired t-test showed a significantly decreased log ratio in the activation of the mirror neuron system in the action observation condition compared to the picture observation condition. Result of the independent t-test indicated no significant differences in the activation of the mirror neuron system in the right and left hemisphere. Conclusion : The mirror neuron system showed greater activation in the action observation condition than in the picture observation condition and activation in the both hemisphere during action observation. We conclude that these findings suggest that this may possibly be an efficient clinical intervention method for improving motor function.

Topology Optimization of the Primary Mirror of a Multi-Spectral Camera (인공위성 카메라 주반사경의 위상최적화)

  • Park, Kang-Soo;Chang, Su-Young;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1194-1202
    • /
    • 2002
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. The optimization is carried out under self-weight and polishing pressure loading. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. As an objective function, a measure of Strehl ratio is used. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criteria method. For the light-weight primary mirror design, a three dimensional model is treated. As a preliminary example, topology optimization considering a self-weight loading is treated. In the second example, the polishing pressure is also included as a loading in the topology optimization of the mirror. Results of the optimized design topology for the mirror with various mass constraints are presented.

Precision Analysis of the Depth Measurement System Using a Single Camera with a Rotating Mirror (회전 평면경과 단일 카메라를 이용한 거리측정 시스템의 정밀도 분석)

  • ;;;Chun Shin Lin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.626-633
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has been done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object point at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. Depth measurement based on such pixel movement is investigated. Since the mirror rotates along an axis that is in parallel with the vertical axis of the image plane, the image of an object will only move horizontally. This eases the task of finding corresponding image points. In this paper, the principle of the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied. Analysis shows that the measurement error increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

Performance Evaluation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템의 성능평가)

  • Kitae Hwang;Kyung-Mi Kim;Yu-Jin Kim;Chae-Won Park;Song-Yeon Yoo;In-Hwan Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2023
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the user along with the mirror function. This paper presents performance evaluation of the CoMirror system as an extension of the previous research in which proposed and implemented the CoMirror system that connects Smart Mirrors using a network. First, the login performance utilizing face recognition was evaluated. As result of the performance evaluation, it was concluded that the 40 face images are most suitable for face learning and only one face image is most suitable for face recognition for login. Second, as a result of evaluating the message transmission time, the average time was 0.5 seconds for text, 0.63 seconds for audio, and 2.9 seconds for images. Third, as a result of measuring a video communication performance, the average setup time for video communication was 1.8 seconds and the average video reception time was 1.9 seconds. Finally, according to the performance evaluation results, we conclude that the CoMirror system has high practicality.

Development of Smart Mirror System for Hearing Deaf's Pronunciation Training (청각 장애인을 위한 발음 교정 학습용 스마트 미러 시스템 개발)

  • Jung, Ha-Yoon;Jeong, Da-Mi;Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.267-274
    • /
    • 2017
  • Recently, there is a new trend about internet of things (IoT) such as shops with smart mirror around the fashion and beauty industry. Since smart mirror can display a content through a monitor which is attached to back of mirror system while looking through a mirror, it can be applied to various industries such as fashion, beauty and health care. This paper proposes an efficient learning system requiring no assistance from others for the hearing deaf who atrophy verbal skill and are inaccurate in pronunciation by using features of smart mirror. Also, this system proposes an efficient and simple lip reading method which can be applied to an embedded system and improves a learning efficiency by employing previously verified pronunciation training data.

Study of the error chsracteristics in a mirror loss measurement system using an exqonential decay metod (지수감쇠 기법을 이용한 반사경 손실측정 시스템의 오차특성 연구)

  • 조민식
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Error characteristics of a mirror loss measurement system using an exponential decay method were studied, with the two samples having about 200-ppm-loss and 30-ppm-loss, respectively. In order to minimize the decay signal deviation from an exponential curve due to cavity length fluctuation, a data average method was tried. The data average method significantly improved the exponential curve fitting error of the decay signal, so that for a 6 decay signal data average the loss measurement error was reduced by about 2.4 times for the 200-ppm-loss mirror and 1.3 times for the 30-ppm-loss mirror compared with a single shot measurement. Day-to-day mirror loss repeatability error for the two samples was investigated. The repeatability error was measured to be about 5% for the 200-ppm-loss mirror and about 26.4% for the 30-ppm-loss mirror. Low decay signal average effect and high repeatability error in the low loss mirror measurement were explained with non-uniform spatial loss distribution of the sample and contamination from the environment, in addition to the error sources of the mirror loss measurement system itself. The influence of cavity length fluctuation and cavity length measurement error on the mirror loss measurement system performance was theoretically calculated. It confirmed that the requirement for the cavity length parameters was not so strict in the mirror loss measurement system of several ppm resolution. ution.

  • PDF

Optical CAD and Analyses of Four Spherical Mirror System for Micro-Lithography (Micro-Lithography를 위한 4 구면경계의 설계 및 수차해석)

  • 조영민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.88-89
    • /
    • 1991
  • For the micro-lithography using a KrF excimer laser beam(λ=0.248${\mu}{\textrm}{m}$) a mirror system consisting of four spherical surfaces with reduction magnification 5$\times$ is designed. Initially the aplanat condition of the mirror system is considered. And for the further improved performance of the system the distortion free condition and flat field condition within Seidel 3rd order aberrations are added to the above condition. During the process of designing the computer-aided optimization technique is extensively employed. The spherical aberration, coma, field curvature and distortion of the optimized four-spherical mirror system are removed to the diffraction limit, and residual astigmatism and off-axial vignetting are not corrected enough.

  • PDF