• Title/Summary/Keyword: Minimal free resolution

Search Result 34, Processing Time 0.018 seconds

THE MINIMAL FREE RESOLUTION OF CERTAIN DETERMINANTAL IDEA

  • CHOI, EUN-J.;KIM, YOUNG-H.;KO, HYOUNG-J.;WON, SEOUNG-J.
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.275-290
    • /
    • 2005
  • Let $S\;=\;R[\chi_{ij}\mid1\;{\le}\;i\;{\le}\;m,\;1\;{\le}\;j\;{\le}\;n]$ be the polynomial ring over a noetherian commutative ring R and $I_p$ be the determinantal ideal generated by the $p\;\times\;p$ minors of the generic matrix $(\chi_{ij})(1{\le}P{\le}min(m,n))$. We describe a minimal free resolution of $S/I_{p}$, in the case m = n = p + 2 over $\mathbb{Z}$.

NON-CANCELABLE BETTI NUMBERS AND TYPE VECTORS

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.201-210
    • /
    • 2004
  • We examine a k-configuration X in P$^2$ or P$^3$ whose minimal free resolution has a non-cancelable Betti number in the last free module. We also find partial answers to the question: which Artinian O-sequences are level or not?

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

  • Payrovi, S.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.611-620
    • /
    • 2002
  • The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.

THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN ?n AND THE WEAK LEFSCHETZ PROPERTY

  • Ahn, Jea-Man;Shin, Yong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.405-417
    • /
    • 2012
  • We find the Hilbert function and the minimal free resolution of a star-configuration in $\mathbb{P}^n$. The conditions are provided under which the Hilbert function of a star-configuration in $\mathbb{P}^2$ is generic or non-generic We also prove that if $\mathbb{X}$ and $\mathbb{Y}$ are linear star-configurations in $\mathbb{P}^2$ of types t and s, respectively, with $s{\geq}t{\geq}3$, then the Artinian k-algebra $R/(I_{\mathbb{X}}+I_{\mathbb{Y})$ has the weak Lefschetz property.

RESOLUTION OF UNMIXED BIPARTITE GRAPHS

  • Mohammadi, Fatemeh;Moradi, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.977-986
    • /
    • 2015
  • Let G be a graph on the vertex set $V(G)=\{x_1,{\cdots},x_n\}$ with the edge set E(G), and let $R=K[x_1,{\cdots},x_n]$ be the polynomial ring over a field K. Two monomial ideals are associated to G, the edge ideal I(G) generated by all monomials $x_i,x_j$ with $\{x_i,x_j\}{\in}E(G)$, and the vertex cover ideal $I_G$ generated by monomials ${\prod}_{x_i{\in}C}{^{x_i}}$ for all minimal vertex covers C of G. A minimal vertex cover of G is a subset $C{\subset}V(G)$ such that each edge has at least one vertex in C and no proper subset of C has the same property. Indeed, the vertex cover ideal of G is the Alexander dual of the edge ideal of G. In this paper, for an unmixed bipartite graph G we consider the lattice of vertex covers $L_G$ and we explicitly describe the minimal free resolution of the ideal associated to $L_G$ which is exactly the vertex cover ideal of G. Then we compute depth, projective dimension, regularity and extremal Betti numbers of R/I(G) in terms of the associated lattice.

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX

  • Kang, Oh-Jin;Kim, Joohyung
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • The authors [6] introduced the concept of a complete matrix of grade $g$ > 3 to describe a structure theorem for complete intersections of grade $g$ > 3. We show that a complete matrix can be used to construct the Eagon-Northcott complex [7]. Moreover, we prove that it is the minimal free resolution $\mathbb{F}$ of a class of determinantal ideals of $n{\times}(n+2)$ matrices $X=(x_{ij})$ such that entries of each row of $X=(x_{ij})$ form a regular sequence and the second differential map of $\mathbb{F}$ is a matrix $f$ defined by the complete matrices of grade $n+2$.

Restrictions on the Entries of the Maps in Free Resolutions and $SC_r$-condition

  • Lee, Kisuk
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.278-281
    • /
    • 2011
  • We discuss an application of 'restrictions on the entries of the maps in the minimal free resolution' and '$SC_r$-condition of modules', and give an alternative proof of the following result of Foxby: Let M be a finitely generated module of dimension over a Noetherian local ring (A,m). Suppose that $\hat{A}$ has no embedded primes. If A is not Gorenstein, then ${\mu}_i(m,A){\geq}2$ for all i ${\geq}$ dimA.