DOI QR코드

DOI QR Code

THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN ?n AND THE WEAK LEFSCHETZ PROPERTY

  • Ahn, Jea-Man (Department of Mathematics Education Kongju National University) ;
  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2011.03.10
  • Published : 2012.03.01

Abstract

We find the Hilbert function and the minimal free resolution of a star-configuration in $\mathbb{P}^n$. The conditions are provided under which the Hilbert function of a star-configuration in $\mathbb{P}^2$ is generic or non-generic We also prove that if $\mathbb{X}$ and $\mathbb{Y}$ are linear star-configurations in $\mathbb{P}^2$ of types t and s, respectively, with $s{\geq}t{\geq}3$, then the Artinian k-algebra $R/(I_{\mathbb{X}}+I_{\mathbb{Y})$ has the weak Lefschetz property.

Keywords

References

  1. H. Abo, G. Ottaviani, and C. Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767-792. https://doi.org/10.1090/S0002-9947-08-04725-9
  2. J. Ahn, A. V. Geramita, and Y. S. Shin, Points set in $P^{2}$ associated to varieties of reducible curves, Preprint.
  3. J. Ahn and Y. S. Shin, Generic initial ideals and graded Artinian-level algebras not having the weak-Lefschetz property, J. Pure Appl. Algebra 210 (2007), no. 3, 855-879. https://doi.org/10.1016/j.jpaa.2006.12.003
  4. J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222.
  5. E. Arrondo and A. Bernardi, On the variety parametrizing completely decomposable polynomials, Preprint. https://doi.org/10.1016/j.jpaa.2010.04.008
  6. M. Boij and F. Zanello, Some algebraic consequences of Green's hyperplane restriction theorems, J. Pure Appl. Algebra 214 (2010), no. 7, 1263-1270. https://doi.org/10.1016/j.jpaa.2009.10.010
  7. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge studies in Advances Mathematics, Cambridge University Press, 1998.
  8. E. Carlini, L. Chiantini, and A. V. Geramita, Complete intersection points on general surfaces in $P^{3}$, Michigan Math. J. 59 (2010), no. 2, 269-281. https://doi.org/10.1307/mmj/1281531455
  9. M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc. 133 (2005), no. 3, 633-642. https://doi.org/10.1090/S0002-9939-04-07632-4
  10. M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of $P^{1}{\times}{\cdot}{\cdot}{\cdot}{\times}P^{1}$ (n-times) are not defective for n ${\geq}$ 5, J. Algebraic Geom. 20 (2011), no. 2, 295-327. https://doi.org/10.1090/S1056-3911-10-00537-0
  11. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995
  12. A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
  13. A. V. Geramita, T. Harima, and Y. S. Shin, An alternative to the Hilbert function for the ideal of a nite set of points in $P^{n}$, Illinois J. Math. 45 (2001), no. 1, 1-23.
  14. A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119. https://doi.org/10.1006/aima.1998.1889
  15. A. V. Geramita, T. Harima, and Y. S. Shin, Decompositions of the Hilbert function of a set of points in $P^{n}$, Canad. J. Math. 53 (2001), no. 5, 923-943. https://doi.org/10.4153/CJM-2001-037-3
  16. A. V. Geramita, T. Harima, and Y. S. Shin, some special congurations of points in $P^{n}$, J. Algebra 268 (2003), no. 2, 484-518. https://doi.org/10.1016/S0021-8693(03)00118-2
  17. A. V. Geramita, H. J. Ko, and Y. S. Shin, The Hilbert function and the minimal free resolution of some Gorenstein ideals of codimension 4, Comm. Algebra. 26 (1998), no. 12, 4285-4307. https://doi.org/10.1080/00927879808826411
  18. A. V. Geramita, J. C. Migliore, and S. Sabourin, On the rst innitesimal neighborhood of a linear conguration of points in $P^{2}$, J. Alg. 298 (2008), 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035
  19. A. V. Geramita and Y. S. Shin, k-congurations in $P^{3}$ all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368. https://doi.org/10.1006/jabr.1998.7651
  20. M. Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996), 119-186, Progr. Math., 166, Birkhauser, Basel, 1998.
  21. T. Harima, Characterization of Hilbert functions of Gorenstein Artin algebras with the weak stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631-3638. https://doi.org/10.1090/S0002-9939-1995-1307527-7
  22. T. Harima, J. C. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian k-algebras, J. Algebra. 262 (2003), no. 1, 99-126. https://doi.org/10.1016/S0021-8693(03)00038-3
  23. C. Mammana, Sulla varieta delle curve algebriche piane spezzate in un dato modo, Ann. Scuola Norm. Super. Pisa (3) 8 (1954), 53-75.
  24. J. Migliore and R. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107. https://doi.org/10.1016/S0022-4049(02)00314-6
  25. J. C. Migliore and F. Zanello, The strength of the weak-Lefschetz property, Preprint.
  26. L. Robbiano, J. Abbott, A. Bigatti, M. Caboara, D. Perkinson, V. Augustin, and A. Wills, CoCoA, a system for doing computations in commutative algebra, Available via anonymous ftp from cocoa.unige.it. 4.7 edition.
  27. A. Terracini, Sulle $V_{k}$ per cui la varieta degli $S_{h}$ (h + 1)-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396. https://doi.org/10.1007/BF03018812

Cited by

  1. Star configurations on generic hypersurfaces vol.407, 2014, https://doi.org/10.1016/j.jalgebra.2014.02.013
  2. A POINT STAR-CONFIGURATION IN ℙnHAVING GENERIC HILBERT FUNCTION vol.28, pp.1, 2015, https://doi.org/10.14403/jcms.2015.28.1.119
  3. The minimal free graded resolution of a star-configuration in Pn vol.219, pp.6, 2015, https://doi.org/10.1016/j.jpaa.2014.07.026
  4. Tower sets and other configurations with the Cohen–Macaulay property vol.219, pp.6, 2015, https://doi.org/10.1016/j.jpaa.2014.07.035
  5. Star-Configurations in ℙnand the Weak-Lefschetz Property vol.44, pp.9, 2016, https://doi.org/10.1080/00927872.2015.1027373
  6. The secant line variety to the varieties of reducible plane curves vol.195, pp.2, 2016, https://doi.org/10.1007/s10231-014-0470-y
  7. SECANT VARIETIES TO THE VARIETY OF REDUCIBLE FORMS vol.27, pp.1, 2014, https://doi.org/10.14403/jcms.2014.27.1.39
  8. Star-Configurations in ℙ2Having Generic Hilbert Function and the Weak Lefschetz Property vol.40, pp.6, 2012, https://doi.org/10.1080/00927872.2012.656783
  9. An Artinian Quotient of the Coordinate Ring of a Complete Intersection in ℙnHaving the Weak Lefschetz Property vol.42, pp.9, 2014, https://doi.org/10.1080/00927872.2013.804527
  10. Plane curves containing a star configuration vol.219, pp.8, 2015, https://doi.org/10.1016/j.jpaa.2014.12.008
  11. SOME EXAMPLES OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN ℙ2HAVING GENERIC HILBERT FUNCTION vol.26, pp.2, 2013, https://doi.org/10.14403/jcms.2013.26.2.403
  12. The Minimal Free Resolution of a Fat Star-Configuration in ℙn vol.21, pp.01, 2014, https://doi.org/10.1142/S1005386714000121
  13. THE MINIMAL FREE RESOLUTION OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN ℙ2 vol.31, pp.4, 2016, https://doi.org/10.4134/CKMS.c150218