• Title/Summary/Keyword: Minimal cut set approach

Search Result 8, Processing Time 0.025 seconds

AIMS-MUPSA software package for multi-unit PSA

  • Han, Sang Hoon;Oh, Kyemin;Lim, Ho-Gon;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1255-1265
    • /
    • 2018
  • The need for a PSA (Probabilistic Safety Assessment) for a multi-unit at a site is growing after the Fukushima accident. Many countries have been studying issues regarding a multi-unit PSA. One of these issues is the problem of many combinations of accident sequences in a multi-unit PSA. This paper deals with the methodology and software to quantify a PSA scenarios for a multi-unit site. Two approaches are developed to quantify a multi-unit PSA. One is to use a minimal cut set approach, and the other is to use a Monte Carlo approach.

시뮬레이션과 네트워크 축소기법을 이용한 네트워크 신뢰도 추정

  • Seo, Jae-Jun;Jeon, Chi-Hyeok
    • ETRI Journal
    • /
    • v.14 no.4
    • /
    • pp.19-27
    • /
    • 1992
  • Since. as is well known, direct computation of the reliability for a large-scaled and complex net work generally requires exponential time, a variety of alternative methods to estimate the network reliability using simulation have been proposed. Monte Carlo sampling is the major approach to estimate the network reliability using simulation. In the paper, a dynamic Monte Carlo sampling method, called conditional minimal cut set (CMCS) algorithm, is suggested. The CMCS algorithm simulates a minimal cut set composed of arcs originated from the (conditional) source node until s-t connectedness is confirmed, then reduces the network on the basis of the states of simulated arcs. We develop the importance sampling estimator and the total hazard estimator and compare the performance of these simulation estimators. It is found that the CMCS algorithm is useful in reducing variance of network reliability estimator.

  • PDF

Safety Assessment for PCS of Photovoltaic and Energy Storage System Applying FTA (FTA를 적용한 태양광 발전 및 ESS 연계형 PCS의 안전성 평가)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Eui-Sik;Nam, Ki-Gong;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.14-20
    • /
    • 2019
  • This paper presents a safety assessment based approach for the safe operation for PCS(Power Conditioning System) of photovoltaic and energy storage systems, applying FTA. The approach established top events as power outage and a failure likely to cause the largest damage among the potential risks of PCS. Then the Minimal Cut Set (MCS) and the importance of basic events were analyzed for implementing risk assessment. To cope with the objects, the components and their functions of PCS were categorized. To calculate the MCS frequency based on IEEE J Photovolt 2013, IEEE Std. 493-2007 and RAC (EPRD, NPRD), the failure rate and failure mode were produced regarding the basic events. In order to analyze the top event of failure and power outage, it was assumed that failures occurred in DC breaker, AC breaker, SMPS, DC filter, Inverter, CT, PT, DSP board, HMI, AC reactor, MC and EMI filter and Fault Tree was drawn. It is expected that the MCS and the importance of basic event resulting from this study will help find and remove the causes of failure and power outage in PCS for efficient safety management.

Development of Accident Frequency Analysis S/W for Chemical Processes (화학공정의 사고 빈도 분석 S/W 개발)

  • Seo Jae Min;Shin Dong Il;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.29-33
    • /
    • 1999
  • ln this study, a computerized prototype program was developed with frequency analysis system as a main system and data base as sub-items to utilize data. Through use of gate-by-gate analysis and minimal cut set using boolean algebra, the frequency analysis program peformed the qualitative approach for the accident development path and a quantitative risk analysis. In conclusion, it is thought that the resulting installation will be effective for lessening the probability of accidents through use of this lower cost software.

  • PDF

A Systems Approach to Press Injuries Using Fault Tree Analysis (Fault Tree Analysis에 의한 Press 안전사고의 체계적 분석)

  • Lee, Myeon-U;Yun, Jo-Deok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 1980
  • The purpose of this study is to attempt a systems approach to press injuries using Fault Tree Analysis. Three major techniques were used: Industrial Accident Dynamics (IAD) by which accident analysis can be made, Fault Tree Analysis (FTA) by which quantification of accident analysis can be made, Computerized Algorithm by which minimal cut set to accident can be identified. A survey has been made of ninety two cases of press injuries from seven industrial firms. All cases of the accident are analyzed using the three techniques. According to the analysis, lack of safety knowledge and improper scaffold seem to be the primal cause of accident. Comparisons of the accident causes to actual accident reports (National Institute of Labor Science) demonstrates that the FTA is a powerful tool for industrial accident prevention. On the basis of this result, some countermeasures are discussed.

  • PDF

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Feasibility Study on the Fault Tree Analysis Approach for the Management of the Faults in Running PCR Analysis (PCR 과정의 오류 관리를 위한 Fault Tree Analysis 적용에 관한 시범적 연구)

  • Lim, Ji-Su;Park, Ae-Ri;Lee, Seung-Ju;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.245-252
    • /
    • 2007
  • FTA (fault tree analysis), an analytical method for system failure management, was employed in the management of faults in running PCR analysis. PCR is executed through several processes, in which the process of PCR machine operation was selected for the analysis by FTA. The reason for choosing the simplest process in the PCR analysis was to adopt it as a first trial to test a feasibility of the FTA approach. First, fault events-top event, intermediate event, basic events-were identified by survey on expert knowledge of PCR. Then those events were correlated deductively to build a fault tree in hierarchical structure. The fault tree was evaluated qualitatively and quantitatively, yielding minimal cut sets, structural importance, common cause vulnerability, simulation of probability of occurrence of top event, cut set importance, item importance and sensitivity. The top event was 'errors in the step of PCR machine operation in running PCR analysis'. The major intermediate events were 'failures in instrument' and 'errors in actions in experiment'. The basic events were four events, one event and one event based on human errors, instrument failure and energy source failure, respectively. Those events were combined with Boolean logic gates-AND or OR, constructing a fault tree. In the qualitative evaluation of the tree, the basic events-'errors in preparing the reaction mixture', 'errors in setting temperature and time of PCR machine', 'failure of electrical power during running PCR machine', 'errors in selecting adequate PCR machine'-proved the most critical in the occurrence of the fault of the top event. In the quantitative evaluation, the list of the critical events were not the same as that from the qualitative evaluation. It was because the probability value of PCR machine failure, not on the list above though, increased with used time, and the probability of the events of electricity failure and defective of PCR machine were given zero due to rare likelihood of the events in general. It was concluded that this feasibility study is worth being a means to introduce the novel technique, FTA, to the management of faults in running PCR analysis.

Study on Quantification Method Based on Monte Carlo Sampling for Multiunit Probabilistic Safety Assessment Models

  • Oh, Kyemin;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Yang, Joon Eon;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.710-720
    • /
    • 2017
  • In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.