• Title/Summary/Keyword: Mines

Search Result 852, Processing Time 0.033 seconds

Seasonal Fluctuation, Reproduction, Development and Damaging Behavior of Compsidia populnea L.(Coleoptera; Cerambicidae) on Populus $alba{\times}glandulosa$ (현사시나무의 줄기 식입해충(害蟲) 포푸라하늘소의 생활사(生活史)에 관한 조사(調査))

  • Park, Kyu-Tek;Paik, Hung-Ryul
    • Korean journal of applied entomology
    • /
    • v.24 no.4 s.65
    • /
    • pp.195-201
    • /
    • 1986
  • This study was conducted to investigate the life history of Compsidia populnea which is major species of the stem-borers on Populus alba{\times}glandulosa$. Peak emergence of the adult of Compsidia populnea L. was around 10th${\sim}$l2nd of May in Chuncheon vicinities, having one generation a year in Korea. There was a preovipositional period of 10.7 days and a ovipositional period of 14.3.days. Mean adult longevity was 11 days for male and 13.8 days for female. Individual eggs were long oval with somewhat narrowed tip at one side and soft, 2.6mm in length, 0.8mm in diameter, and were laid singly under the U-shaped scars which were made by female before oviposition. Total number of scars per female averaged 56.6 ($8{\sim}135$) and eggs were found in 67.9 percent of the total scars. Egg period was $8{\sim}11$ days at $25^{\circ}C$ constant temperature and $7{\sim}14$ days in the field condition. Early young larvae stayed for $2{\sim}3$ weeks under the scars and then boring into the xylem, forming galls at this time. Size of the gall was 1.8cm($1.3{\sim}2.5$) in length, 1.6cm($1.0{\sim}2.2$) in diameter and the length of mine was everage 3.1cm. Fully grown larvae were developed around the early October and overwintered in the mines of galls. Pupation was done around the early of April. Pupal developmental period averaged 11 days($9{\sim}13$ days) at $25^{\circ}C$ constant temperature condition.

  • PDF

Chemical and Optical Absorption Spectroscopic Study of Colored Tourmalines (유색 전기석의 화학적 및 광학흡수 분광학적 연구)

  • Kim, Hee-Jong;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The chemical and optical absorption spectroscopic characters of pink and colorless tourmalines from San Diego mine in California, U.S.A., blue/green tourmalines from anonymous mine, Brazil, and brownis black tourmalines from Uncheon and Haksan mines in Korea have been studied using X-ray diffractometer, electron microprobe, optical absorption spectroscopy, and heat treatment. Least-squares refinements give unit cell diminsions : a = 15.96-16.01 ${\AA}$, c = 7.15-7.16 ${\AA}$ for the brownish black tourmalines, a = 15.82 - 15.87 ${\AA}$, c = 7.09 - 7.10 ${\AA}$ for pink tourmalines, and a = 15.88 - 15.94 ${\AA}$, c = 7.12 - 7.15 ${\AA}$ for blue green tourmalines. The colors of tourmalines are responsible for the transition elements. The pink color is attributed to the $Mn^{3+}$ ions, the blue-green to $Fe^{2+}$ and $Mn^{2+}$, bluish green to $Cu^{2+}$, and the brownish black to $Fe^{2+}$, $Fe^{2+}$ - $Fe^{3+}$, and $Fe^{2+}$ - $Ti^{4+}$. The $Mn^{3+}$ ions of pink color tourmalines are stabilized in the Y sites compressed along the O(1)H-O(3)H axis by Jahn-Teller distortion. Heating removes the pink or red component from tourmalines, producing the colorless stones from the pink and red ones. The bluish green samples change into the greenish blue ones and a certain yellowish green samples change into the light green ones by heat treatment. In the elbaite-schorl series, the concentration of Fe and Mn are variable depending on the color zones. The green zone is characterrized by the high content of Fe and Mn are variable depending on the color zones. The green zone is characterized by the high content of Fe, whereas the pink zone by the high content of Mn. Mn increases in deep yellow zone compared with yellow or colorless zones.

  • PDF

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine (폐금속광산 하류 논토양의 중금속 오염도 평가)

  • Kim, Min-Kyeong;Hong, Sung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Lee, Jong-Sik;So, Kyu-Ho;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • BACKGROUND: Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination for agricultural soils and crops in the these areas. METHODS AND RESULTS: This experiment was carried out to investigate the assessment of the heavy metal contamination in paddy soils located on downstream of the closed metalliferous mine. The average total concentrations of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), and arsenic (As) in paddy soils were 8.88, 56.7, 809, 754, and 37.9 mg/kg, respectively. Specially, the average concentrations of Cd, Pb and Zn were higher than those of warning criteria for soil contamination(4 mg/kg for Cd, 200 mg/kg for Pb, and 300 mg/kg for Zn) in agricultural soil established by Soil Environmental Conservation Act in Korea. The proportions of 0.1 M HCl extractable Cd, Cu, Pb, Zn, and As concentration to total concentration of these heavy metals in paddy soils were 27.7, 21.3, 35.1, 13.8 and 10.5%, respectively. The pollution index of these five metals in paddy soils ranged from 0.42 to 11.92. Also, the enrichment factor (EFc) of heavy metals in paddy soils were in the order as Cd>Pb>Zn>Cu>As, and the enrichment factor in paddy soil varied considerably among the sampling sites. The geoaccumulation index (Igeo) of heavy metals in soils were in the order as Cd>Pb>Zn>Cu>As, specially, the average geoaccumulation index of Cd, Pb, and Zn (Igeo 2.49~3.10) were relatively higher than that of other metals in paddy soils. CONCLUSION: Based on the pollution index, enrichment factor, and geoaccumulation index for heavy metal in paddy soils located on downstream of closed metalliferous mine, the main contaminants are mine waste materials and mine drainage including mine activity.

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

The Ecological Values of the Korean Demilitarized Zone(DMZ) and International Natural Protected Areas (비무장지대(DMZ)의 생태적 가치와 국제자연보호지역)

  • Cho, Do-soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.272-287
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) was established in 1953 by the Korean War Armistice Agreement. It extends from the estuary of the Imjin River, in the west, to the coast of the East Sea. It is 4 km in width and 148 km in length. However, the ecosystems of the civilian control zone (CCZ) located between the southern border of the DMZ and the civilian control line (CCL) and the CCZ in the estuary of the Han River and the Yellow Sea are similar to those in the DMZ, and, therefore, the ecosystems of the DMZ and the CCZ are collectively known as the "ecosystems of the DMZ and its vicinities." The flora in the DMZ and its vicinities is composed of 1,864 species, which accounts for about 42% of all the vascular plant species on the Korean Peninsula and its affiliated islands. Conducting a detailed survey on the vegetation, flora, and fauna in the DMZ is almost impossible due to the presence of landmines and limitations on the time allowed to be spent in the DMZ. However, to assess the environmental impact of the Munsan-Gaesong railroad reconstruction project, it was possible to undertake a limited vegetation survey within the DMZ in 2001. The vegetation in Jangdan-myeon, in Paju City within the DMZ, was very simple. It was mostly secondary forests dominated by oaks such as Quercus mongolica, Q. acutissima, and Q. variabilis. The other half of the DMZ in Jangdan-myeon was occupied by grassland composed of tall grasses such as Miscanthus sinensis, M. sacchariflorus, and Phragmites japonica. Contrary to the expectation that the DMZ may be covered with pristine mature forests due to more than 60 years of no human interference, the vegetation in the DMZ was composed of simple secondary forests and grasslands formed on former rice paddies and agricultural fields. At present, the only legal protection system planned for the DMZ is the Natural Environment Conservation Act, which ensures that the DMZ would be managed as a nature reserve for only two years following Korean reunification. Therefore, firstly, the DMZ should be designated as a site of domestic legally protected areas such as nature reserve (natural monument), scenic site, national park, etc. In addition, we need to try to designate the DMZ as a UNESCO Biosphere Reserve or as a World Heritage site, or as a Ramsar international wetland for international cooperation. For nomination as a world heritage site, we can emphasize the ecological and landscape value of the wetlands converted from the former rice paddies and the secondary forests maintained by frequent fires initiated by military activities. If the two Koreas unexpectedly reunite without any measures in place for the protection of nature in the DMZ, the conditions prior to the Korean War, such as rice paddies and villages, will return. In order to maintain the current condition of the ecosystems in the DMZ, we have to discuss and prepare for measures including the retention of mines and barbed-wire fences, the construction of roads and railroads in the form of tunnels or bridges, and the maintenance of the current fire regime in the DMZ.

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

A study on quantification of α-quartz, cristobalite, kaolinite mixture in respirable dust using by FTIR (FTIR를 이용한 호흡성 분진중 α-quartz, cristobalite, kaolinite 혼합물 정량 분석 연구)

  • Eun Cheol Choi;Seung Ho Lee
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.315-323
    • /
    • 2023
  • This study is to quantify α-quartz, cristobalite and kaolinite using by FTIR in respirable dust generated in the mining workplace. Various minerals in mines can interfere with peaks when quantifying respirable crystalline silica by FTIR. Therefore, for accurate quantification, it is necessary to remove interfering substances or correct the peaks that cause interference. To confirm the peaks occurring in α-quartz, cristobalite and kaolinite, each standard material was diluted with KBr and scanned in the range of 400 cm-1 to 4000 cm-1 using by FTIR. As a result of scanning the analytes, it was decided to use the peaks of 797.66 cm-1 and 695.25 cm-1 for α-quartz, 621.58 cm-1 for cristobalite, and 3696.47 cm-1 for kaolinite. When the above materials are mixed, interference occurs at the peak for quantification, which is corrected by the calculation formula. The analysis of the mixture of α-quartz and cristobalite shows the average bias (%) of 2.64 (corrected) at α-quartz (797.66 cm-1), 5.61 (uncorrected) at α-quartz (695.25 cm-1) and 1.51 (uncorrected) at cristobalite (621.58 cm-1). The analysis of the mixture of α-quartz and kaolinite shows the average bias(%) of 1.79(corrected) at α-quartz (797.66 cm-1), 3.92 (corrected) at α-quartz (695.25 cm-1) and 2.58 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of cristobalite and kaolinite shows the average bias (%) of 2.15 (corrected) at cristobalite (621.58 cm-1), 4.32 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of αquartz and cristobalite and kaolinite shows the average bias (%) of 1.93(corrected) at α-quartz (797.66 cm-1), 6.47 (corrected) at α-quartz (695.25 cm-1) and 1.77 (corrected) at cristobalite (621.58 cm-1) and 2.61 (uncorrected) at kaolinite (3696.47 cm-1). The experimental results showed that the deviation caused by peak interference by two or three substances could be corrected to less than 6 % of the average deviation. This study showed the possibility of correcting and quantifying when various interfering substances that are difficult to remove are mixed.