The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir

주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성

  • Lee, Pyeong-Koo (Geological and Environmental Hazards Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chi, Se-Jung (Geology & Geoinformation Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Youm, Seung-Jun (Geological and Environmental Hazards Division, Korea Institute of Geoscience and Mineral Resources)
  • 이평구 (한국지질자원연구원 지질환경재해연구부) ;
  • 지세정 (한국지질자원연구원 지질기반정보연구부) ;
  • 염승준 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2008.08.28

Abstract

In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

하천수와 하천퇴적물에 의한 주암호 내 미량원소의 유입량 및 하천퇴적물 입도에 따른 미량원소의 지구화학적 거동을 규명하기 위하여 주암호 주변의 3 4차 수계 32 지점에서 채취한 하천퇴적물과 하천수의 미량원소(비소, 카드뮴, 크롬, 구리, 니켈, 납, 아연)를 분석하였고, 하천수의 경우에는 주요 양이온 및 음이온을 함께 분석하였다. 또한 집수 유역 내 모암 및 오염원 분포를 고려하여, 대표적인 8개 지점의 하천퇴적물을 선택하고, 입도($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$, < $20\;{\mu}m$) 별로 미량원소 함량을 구하였다. 주암호 집수유역 하천수는 오염원(탄광, 금속광, 농경지, 주거) 별로 4개 유형의 수질유형(Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$)의 특성을 반영하고 있다. 하천퇴적물의 입도와 미량원소 농도와의 상관성은 주암호으로 유입되는 미량원소의 지화학적 거동을 규명하는데 중요하다. 하상퇴적물의 입도가 작아질수록 미량원소 함량이 증가되는 뚜렷한 경향을 나타내고 있다. 폐금속광산 하류 하천퇴적물의 구리, 아연 및 납은 실트 입도(< $20\;{\mu}m$)에서 급격하게 증가되는 경향을 보이는 반면, 비소의 경우는 모래 입도($2\;mm{\sim}100\;{\mu}m$)에서 높은 함량을 나타내고 있다. 이는 퇴적물내의 구리, 아연, 납, 등 미량원소들은 실트 크기의 입자에 흡착된 상태고 주암호로 쉽게 이동됨을 지시해주고 있는 반면, 비소는 함 비소 광물상으로 이동되어 주암호로 유입될 가능성이 미약한 것으로 판단된다.

Keywords

References

  1. Ankley, G.T., Lodge, K., Call, D.J., Balcer, M.D., Brooke, L.T., Cook, P.M., Kresis, Jr., Baptista Neto, J.A., Smith, B.J., McAllister and J.J. (1992) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ. Pollut., v. 109 p. 1-9 https://doi.org/10.1016/S0269-7491(99)00233-X
  2. Audry, S., Schafer, J., Blanc G., Bossy, C. and Lavaux, G. (2004) Anthropogenic components of heavy metal (Cd, Zn, Cu, Pb) budgets in the Log-Garonne fluvial system (France). Appl Geochem., v. 19, p. 769-86 https://doi.org/10.1016/j.apgeochem.2003.10.002
  3. Avila, A., Alarcon, M. and Queralt, I. (1998) The chemical composition of dust transported in red rains- its contribution to the biogeochemical cycle of a Holm Oak forest in Catalonia (Spain). Atmos. Environ., v. 32, p. 179-191 https://doi.org/10.1016/S1352-2310(97)00286-0
  4. Bird, G.A. and Schwartz, W. (1997) Distribution coefficients Kds, for iodide in Canadian shield lake sediments under oxic and anoxic conditions. J. Environ. Radioact., v. 35, p. 261-279 https://doi.org/10.1016/S0265-931X(96)00062-8
  5. Boller, M. (1997) Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Sci Technol., v. 35 p. 77-87
  6. Forster, J. (1996) Patterns of roof runoff contamination and their potential implications on practice and regulation of treatment and infiltration. Water Sci Technol., v. 33, p. 39-48
  7. Gaillardet, J., Viers, J. and Dupre, B. (2003) Trace elements in river waters. In Drever Jl editor. Treatise on Geochemistry, D. Holland and K.K. Turekian series editors, Vol. 5, p. 225-272
  8. Galan, E., Gomez-Ariza, JL., Gonzalez, I., Fernandez-Caliani, JC., Mora-les, E. and Giraldez, I. (2003) Heavy metals partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Goechem., v. 18, p. 409-21 https://doi.org/10.1016/S0883-2927(02)00092-6
  9. Garnier, J.-M., Pham, M.K., Ciffroy, P. and Martin, J.-M. (1997) Kinetics of trace element complexation with suspended mat-ter and with filterable ligands in freshwater. Enviorn. Sci. Technol. v. 31, p. 1597-1606 https://doi.org/10.1021/es9602096
  10. Gibbs, R.J. (1973) Water chemistry of the Amazon river. Geochim. Cosmochim. Acta, v. 36, p. 1006-1066
  11. Good, J. (1993) Roof runoff as a diffuse source of metals and aquatic toxicity in storm water. Water Sci Technol., v. 28, p. 317-21
  12. Koelmand, A.A. and Radovanovic, H. (1998) Prediction of trace metal distribution coefficients (KD) for aerobic sediments. Water Sci. Technol., v. 37 p. 71-78
  13. Korea Water Resources Corporation (2001) Annual management report: Juam multipurpose dam. Korea Water Resources Corporation, p. 391
  14. Lacal, J., Pilar da Silva, M., Garcia, P., Sevilla, TM., Procopio, JR. and Hemadez, L. (2003) Study of fractionation and potential mobility of metal in sludge from pyrite mining and affected river sediments: changes in mobility over time and use of artificial ageing as a tool in environmental impact assessment. Environ Pollut., v. 124, p. 291-305 https://doi.org/10.1016/S0269-7491(02)00461-X
  15. Lee, P.K., Touray, J.C., Baillif, P. and Ildefonse, J.P. (1997) Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Sci Total Environ., v. 201, p. 1-15 https://doi.org/10.1016/S0048-9697(97)84048-X
  16. Lee, P.K., Yu, Y.H., Yun, S.T. and Mayer, B. (2005) Metal contamination and solid phase partitioning of metals in urban roadside sediments. Chemosphere, v. 60, p. 672-689 https://doi.org/10.1016/j.chemosphere.2005.01.048
  17. Legret, M. and Pagotto C. (1999) Evaluation of pollutant loadings in the runoff water from a major rural highway. Sci Total Environ., v. 235, p. 143-50 https://doi.org/10.1016/S0048-9697(99)00207-7
  18. Leivouri, M. (1998) Heavy metal contamination in surface sediment in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere, v. 36, p. 43-59 https://doi.org/10.1016/S0045-6535(97)00285-3
  19. Maher, W.A. and Aislabie, J. (1992) Polycyclic aromatic hydrocarbons in nearshore marine sediments of Australia. Sci. Total Environ., v. 11, p. 143-164
  20. Makepeace, D., Smith, D. and Stanley, S. (1995) Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol., v. 25, p. 93-139 https://doi.org/10.1080/10643389509388476
  21. Mortvedt, JJ. (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fertil Res., v.43, p. 55-61 https://doi.org/10.1007/BF00747683
  22. Nicholson, FA., Smith, SR., Alloway, BJ., Carlton-Smith, C. and Chambers, BJ. (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ., v. 311, p. 205-19 https://doi.org/10.1016/S0048-9697(03)00139-6
  23. Nriagu, JO. and Pacyna, JM. (1988) Quantitative assessment of world wide contamination of air, water an soils by trace metals. Nature., v. 33, p. 134-9
  24. Radovanovic, H. and Koelmans, A.A. (1998) Prediction of in situ trace metal distribution coefficients for suspended solids in natural waters. Environ. Sci Technol., v. 32, p. 753-759 https://doi.org/10.1021/es970481v
  25. Ruhling, A. (2002) A European survey of atmospheric heavy metal deposition in 2000-2001. Environ Pollut., v. 120, p. 23-5 https://doi.org/10.1016/S0269-7491(02)00125-2
  26. Salomons, W. and Forstner, U. (1984) Metals in the Hydrocycle. NY: Springer Verlag
  27. Salomons, W., Forstner, U. and Mader P. (1995) Heavy Metals: Problems and Solutions. Berlin: Springer Verlag., p. 412
  28. Sensesi, GS., Baldassarre, G., Senesi, N. and Radian, B. (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, v. 39, p. 343-77 https://doi.org/10.1016/S0045-6535(99)00115-0
  29. Soler, Soler, J. and Soler, Rovira, J. (1996) Cadmium in inorganic fertilizers. In:Rodriguez-Barrueco C, editor Fertilizers and Environment, p. 541-5
  30. Stuyfzand, P.L., 1995, The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands. Water Science & Technology, v. 31, p. 47-57
  31. Tessier, A., Campbell, P.G.C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., v. 51, p. 844-850 https://doi.org/10.1021/ac50043a017
  32. Tipping, E. (1993) Modeling the competition between alkaline earth cations and trace metal species for binding by humic substances Environ. Sci. Technol., v. 27, p. 520-529 https://doi.org/10.1021/es00040a011
  33. Tipping, E., Lofts, S. and Sawlor, A.J. (1998) Modeling chemical speciation of trace metals in the surface water of the Humber system. Sci. Total. Environ., v. 210/211, p. 63-77
  34. Xue, H.B., Gachter, R. and Sigg, L. (1997) Comparison of Cu and Zn in eutrophic lakes with oxic and anoxic hypolimnion. Aquat. Sci., v. 59, p. 176-189 https://doi.org/10.1007/BF02523179
  35. Youm, S.J., Lee P.K., Kang, M.J., Shin, S.C. and Yu, Y.H. (2004) Contamination level and behavior of heavy metals in stream sediments within the watershed of Juam reservoir. Economic and Environmental Geology, v. 37, p. 311-324