• Title/Summary/Keyword: Mines

Search Result 857, Processing Time 0.022 seconds

Geologic and Fluid Inclusion Studies of Chongyang Tungsten Ore Deposits, South Korea (청양중석광상(靑陽重石鑛床)의 지질(地質)과 유체포유물(流體包有物)에 의(依)한 온도측정(溫度測定)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 1977
  • Chongyang tungsten ore deposits, one of the most important tungsten mines in South Korea, me open space filling hydrothermal vein deposits embedded in Precambrian biotite gneiss and, Cretaceous (?) granite porphyry. Some wolframite-bearing quartz veins are closely associated with -quartz porphyries which strike about $N15^{\circ}-25^{\circ}W$ and dip $800^{\circ}SE$ to vertical. Mineralization took place in near vertical vein systems of 5 to 2000 meter long in the biotite gneiss and granite porphyry stock during early Cretaceous and Tertiary (?) period. The hydrothermal mineral paragensis has indicated that there were two major stages: vein and vug stages. The principal vein mineral is wolframite in a gangue of quartz with small amount of fluorite, pyrite, beryl and carbonate minerals. Present in minor amounts are molybdenite, bithmuthinite, native bismuth, arsenopyrite, galena, chalcopyrite, pyrrhotite, sphalerite and scheelite. Fluid inclusion study from the minerls at Chongyang mine reveals that vein stage fluids attained a temperature range of $200^{\circ}C-355^{\circ}C$ and vug stage $160^{\circ}C-350^{\circ}C$. The filling temperatures show the higher range of $200^{\circ}-355^{\circ}C$ in quartz and $280^{\circ}C-348^{\circ}C$ in beryls, whereas the lower emperature range of $283^{\circ}C-295^{\circ}C$ in rhodochrosite and $160^{\circ}-253^{\circ}C$ in fluorites. These temperatures are in reasonably good agreement with mineral paragnesis in this ore deposits. Volfamite minerals were analysed for major components. $WO_3$, MnO and FeO by wet chemical method. Chemical analysis indicates that they contain 70.56-71.54% $WO_3$, 8.52-10.01% MnO and 10.00-11.58% FeO. MnO/FeO ratios of wolframites shows the range of 0.78-0.94 which maybe indicates a comparatively high temperature type of hydrothermal deposits.

  • PDF

Copper Mineralization of the Donghwa and Hwanghagsan Mine (동화-황학산광산의 동광화작용)

  • Lee, Hyun Koo;Kim, Sang Jung;Kim, Mun Young
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Copper mineralization of the Donghwa and Hwanghagsan mines was deposited in hydrothermal quartz veins which filled fissures in Cretacous sedimentary rocks. Ore minerals are pyrite, sphalerite, chalcopyrite, bornite, galena, wittichenite and unidentified Cu-Bi-Pb-Sb-S mineral. On the basis of salinities and homogenization temperatures for fluid inclusions, the Donghwa deposit was deposited from $300^{\circ}C$ to $220^{\circ}C$ with 2.5 to 0.2 wt.% eq. NaCl, and the Hwanghagsan deposits was deposited from $300^{\circ}C$ to $160^{\circ}C$ with 4.0 to 0.0 wt.% eq. NaCl. Evidence of boiling suggests pressure of 170 to 60 bar, these pressures correspond to 1700 m to 600 m. The ${\delta}^{34}S_{H_2S}$ values of the Donghwa deposit (4.8~7.4%) are higher than those of the Hwanghagsan deposit (3.5~4.5%), sulfur isotope compositions indicate that ore fluids partially reacted with meteoric water and wall-rock. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ of the Donghwa deposit (> $420^{\circ}C$, $10^{-3.2}atm$) is higher condition than that of the Hwanghagsan deposit (> $290^{\circ}C$, $10^{-7.0}atm$). K-Ar ages for biotite granite and quartz porphyry in the study area are 64.7 Ma, and 60.9 Ma, reapectively. Mineralization age using sericite in the Donghwa deposits is 59.8 Ma. Therfore, Copper mineralization in the study area was associated with acidic igneous activity such as biotite granite or quartz porphyry.

  • PDF

A Study on Diesel Engine Performance with Ar and $CO_2$ Addition (Ar과 $CO_2$ 첨가에 따른 디젤기관의 성능에 관한 연구)

  • 정영식;이상만;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.93-99
    • /
    • 1997
  • The re quest to develop the engines that are able to run without air or with very little oxygen condition is raised with the interest of ocean science or the mines. This research had already be gun before the world war II, but had been stagnant owing to the appearance of nuclear power. Recycle diesel engines have ability to run under the above mentioned condition the recycle diesel engine recirculates exhaust gases into intake port and consumes additional oxygen supplied by oxygen tank. Carbon dioxide is controlled by the absorber. The combustion and emission characteristics of recycle diesel engines are quite different with conventional one because the working fluids of recycle diesel engines consist of Ar, $CO_2$ and $O_2$ as well as $N_2$. Recycle diesel engine is therefore different with general diesel engine from the viewpoint of intake air composition. It is required to investigate the effect of intake composition in the combustion and emission to know recycle diesel engine. In this study, NOx concentration, smoke and cylinder pressure are measured with the variation of Ar and $CO_2$ Reduces show that the addition of Ar reduces NOx but increases smoke. Otherwise $CO_2$ reduces smoke and NOX simultaneously. Only $CO_2$ increases the ignition delay and both gases increase fuel consumption Ar addition is superior to $CO_2$ addition for the performance of recycle diesel engine system but $CO_2$ has the avantage with respect to emission.

  • PDF

Low frequency Long Duration Blast Vibrations and Their Effect on Residential Structures (지속시간이 긴 저주파 발파진동과 주거 구조물에 미치는 영향)

  • Roy M. P.;Sirveiya A. K.;Singh P. K.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.57-66
    • /
    • 2005
  • A major concern with blasting at surface mines is generation of ground vibration, air blast, flyrock, dust & fume and their impact on nearby structures and environment. A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Draglines and shovels with dumpers carry out the removal of overburden. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5km, the persistence of vibrations in the structures was substantially increased by more 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted into lower amplitude and reduced persistence of vibration in the structures.

Environmental Contamination from Acid Mine Drainage (산성광산배수로 인한 환경오염도 조사)

  • Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.143-150
    • /
    • 2007
  • AMD (Acid mine drainage) from disused mines is one or the most significant pollutant problems to make harmful effect to human health. We demonstrated the mechanism of resolution and adsorption reaction for arsenic, manganese and zink from the soil and mine tailings which were located in the vicinity of a disused mine in Kyoungnam area. The resolution experiments were carried with a column test f3r 45 days continuously. Metal chemical forms in water were changed with the condition of solution pH and ORP (oxidation-reduction potential). Metal chemical forms affected on the reaction of resolution and adsorption of metals in water environments. Even though the sampling was carried in very closed location, there was significant different results of pollution level and ORP changes in terms of column operations. Hence It was important to note the pH and ORP in AMD to evaluate a risk assessment and a soil management using monitoring metals. When we operate AMD management with the mechanism of resolution and adsorption it can be achieved better economic solution.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Economical aessesment of long tunnel route complex geological formations (복잡한 지질구조암반층에서의 장대터널노선 선정을 위한 경제성 평가에 대한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • A new railway line of about 17km length was planned between Dongbaeksan and the neighboring town Dokye to improve the existing decrepit railway system. New line about 17km of the distance will almost be in circular alignment tunnels owing to the difference of elevation about 380m. Since the geology of the area is rather unusual compared to the normal in South Korea, extensive geological investigations have been carried out to prepare geological maps and profiles along the planned tunnel routes. The tunnel will almost be in sedimentary rock formations, such as limestone, sandstone, shale, coal etc and be near abandoned mines Various rock formations have the complicated, alter ed those rocks, but are well developed with laminated formations. Each rock formations have been classified using the Q-system and the cost of tunnel excavation, support has been estimated and compared for three alternative routes in the design stage. Based on these estimates, the final route of t he railway line was chosen.

  • PDF

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.

A simple approach for quality evaluation of non-slender, cast-in-place piles

  • Zhang, Ray Ruichong
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • This study proposes a conceptual framework of in-situ vibration tests and analyses for quality appraisal of non-slender, cast-in-place piles with irregular cross-section configuration. It evaluates a frequency index from vibration recordings to a series of impulse loadings that is related to total soil-resistance forces around a pile, so as to assess if the pile achieves the design requirement in terms of bearing capacity. In particular, in-situ pile-vibration tests in sequential are carried out, in which dropping a weight from different heights generates series impulse loadings with low-to-high amplitudes. The high-amplitude impulse is designed in way that the load will generate equivalent static load that is equal to or larger than the designed bearing capacity of the pile. This study then uses empirical mode decomposition and Hilbert spectral analysis for processing the nonstationary, short-period recordings, so as to single out with accuracy the frequency index. Comparison of the frequency indices identified from the recordings to the series loadings with the design-based one would tell if the total soil resistance force remains linear or nonlinear and subsequently for the quality appraisal of the pile. As an example, this study investigates six data sets collected from the in-situ tests of two piles in Taipu water pump project, Jiangshu Province of China. It concludes that the two piles have the actual axial load capacity higher than the designed bearing capacity. The true bearing capacity of the piles under investigation can be estimated with accuracy if the amplitude of impact loadings is further increased and the analyses are calibrated with the static testing results.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.