• Title/Summary/Keyword: Mineral-Salt

Search Result 298, Processing Time 0.029 seconds

Three-dimensional Modeling of Marine Controlled-source Electromagnetic Surveys Based on Finite Difference Method (유한차분법에 기초한 인공송신원 해양전자탐사 모델링)

  • Han, Nu-Ree;Nam, Myung-Jin;Ku, Bon-Jin;Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • This paper presents development of a three-dimensional marine controlled-source electromagnetic (mCSEM) modeling algorithm and its application to a salt and reservoir model to examine detectability of mCSEM for a reservoir under complex subsurface structures. The algorithm is based on the finite difference method, and employs the secondary field formulation for an accurate and fast calculation of modeling responses. The algorithm is verified for a two-layer model by comparing solutions not only with analytic solutions but also with those from other 3D modeling algorithm. We calculate and analyze electric and magnetic fields and their normalized responses for a salt and reservoir model due to three sources located at boundaries between a salt, a reservoir, and background. Numbers and positions of resistive anomalies are informed by normalized responses for three sources, and types of resistive anomalies can be informed when there is a priori information about a salt by seismic exploration.

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18T and NC20

  • Jung-Yun Lee;Dong-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1427-1434
    • /
    • 2022
  • Two novel, halotolerant strains of Martelella soudanensis, NC18T and NC20, were isolated from deep subsurface sediment, deeply sequenced, and comparatively analyzed with related strains. Based on a phylogenetic analysis using 16S rRNA gene sequences, the two strains grouped with members of the genus Martelella. Here, we sequenced the complete genomes of NC18T and NC20 to understand the mechanisms of their halotolerance. The genome sizes and G+C content of the strains were 6.1 Mb and 61.8 mol%, respectively. Moreover, NC18T and NC20 were predicted to contain 5,849 and 5,830 genes, and 5,502 and 5,585 protein-coding genes, respectively. Both strains contain the identically predicted 6 rRNAs and 48 tRNAs. The harboring of halotolerant-associated genes revealed that strains NC18T and NC20 might tolerate high salinity through the accumulation of potassium ions in a "salt-in" strategy induced by K+ uptake protein (kup) and the K+ transport system (trkAH and kdpFABC). These two strains also use the ectoine transport system (dctPQM), the glycine betaine transport system (proVWX), and glycine betaine uptake protein (opu) to accumulate "compatible solutes," such as ectoine and glycine betaine, to protect cells from salt stress. This study reveals the halotolerance mechanism of strains NC18T and NC20 in high salt environments and suggests potential applications for these halotolerant and halophilic strains in environmental biotechnology.

Alkaline and Antioxidant Effects of Bamboo Salt (죽염의 알칼리성 및 항산화 효과)

  • Zhao, Xin;Jung, Ok-Sang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1301-1304
    • /
    • 2012
  • Mineral contents of various salts were determined by the ICP-OES method. Bamboo salt (baked 9 times) contained more potassium, calcium, magnesium, and manganese, compared to purified and solar salts. Bamboo salt had a pH of 11.04, higher than those of purified (6.29) and solar (9.13) salts. Contents of [$OH^-$] were measured by using the FT-IR spectra. Bamboo salt exhibited higher reduction potential and contained more OH groups than purified and solar salts. The reduction peak of bamboo salt was observed to be about three times broader than that of solar salt in terms of redox potential amperometry. At a salt concentration of 25%, bamboo salt showed higher radical scavenging activities (81.4%) than solar (5.0%) and purified (2.0%) salts, as evaluated by DPPH assay. Bamboo salt revealed alkaline property, more OH groups and antioxidative activity.

Formulation Of Some Mathematical Models For The Estimations Of The Most Probable Salts Derived From The Major Mineral Constituents In Natural Water

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.759-770
    • /
    • 1995
  • By extensive studies with the quantitative status of the mineral constituents of thousands of water samples, it was found that almost in all natural waters irrespective of the surface or sub-surface sources, minimum 99.5% of the total amount of the cationic constituents are generally the contributions of 3 commonly present parameters viz. Ca, Mg and Na and that of the anionic species are same and contributed by $HCO_3$, Cl and $SO_4$ only. In the field of water works, all these major mineral substances are conventionally measured as their individual ions. But till now, no reliable and generalised methods or rules have been developed for the determination of the exact kinds of the individual salt components and their amounts from these ionic constituents normally present in water. As salt content, only the TDS (Total Dissolved Solids) parameter is frequently measured by evaporation of the water sample. But TDS can tell nothing about the kinds and amounts of the individual salts present in it. Considering the analytical importance of the estimation of the mineral substances as their individual salts, some generalised mathematical models have been developed by this research which are based on the 'hypothetical order of chemical combinations' as may occur among the ionic constituents. With the help of these models, one can easily assume the most probable salts with approximate quantities derived from the ionic constituents. In addition, approximate amount of Na content can also be estimated mathematically with simultaneous verification of the correctness of the water analysis results. The models are stated in this paper with practical illustrations and descriptions of the method of applications.

  • PDF

Effects of Different Kinds of Salt in the Comutagenicity and Growth of Cancer Cells (소금의 보돌연변이 및 암세포성장억제 효과)

  • Zhao, Xin;Kim, So-Hee;Qi, Yongcai;Kim, So-Young;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Purified salt and several different types of sea salts showed comutagenicity in the presence of MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). However, the salts exhibited anti-cancer effects in HCT-116 human colon carcinoma cells and AGS human gastric adenocarcinoma cells. Sea salt showed less comutagenicity effects than purified salt. French sea salt (Salines de Guerande) and Korean sea salt I, which contained higher levels of minerals, showed less comutagenicity. In MTT assay, when HCT-116 and AGS cancer cells were treated with the salts, French sea salt (36% and 34%) and Korean sea salt I (35% and 33%) showed higher anticancer activities than Spanish sea salt (33% and 31%), Italian sea salt (29% and 27%), Korean sea salt II (22% and 22%), or purified salt (18% and 15%) at a salt concentration of 1%. French sea salt and Korean sea salt I also showed better anticancer activities than the other salt samples at a low concentration of 0.5% (p<0.05). Apoptosis related genes of Bax and Bcl-2 were regulated by the treatment of the salt in the colon cancer cells. French sea salt and Korean sea salt I especially increased Bax mRNA expression, but decreased Bcl-2 expression, indicating that they can induce apoptosis of the cancer cells. From the experimental results, sea salt showed better health functional effects than the purified salt, and French sea salt and Korean sea salt I which contained high levels of Ca, K, and Mg showed better effects.

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A.;Shah, M. Kashif;Naveed, M.;Akhter, M. Javed
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1288-1294
    • /
    • 2010
  • Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.

Heat Balance during the Electrowinning of Neodymium Metal in Molten Salt (네오디뮴 금속의 전해 채취 중의 열수지)

  • Cho, Sung-Wook;Yu, Jeong-Hyun;Choi, Ho-Gil
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.81-87
    • /
    • 2022
  • Energy consumption per unit weight of metal (kwh/kg of metal) is one of the most important economic indicators in the process of molten salt electrolysis. It is related to the heat loss of salt bath and the current efficiency of the process. The current efficiency is highly dependent on electrolysis temperature. On the other hand, the temperature of salt bath may increase significantly due to the difference (larger energy input than consumption) in heat balance at the beginning of electrolysis, which may cause different electrolysis temperature from an initially targeted value. This results in a bad effect on current efficiency. Therefore, it will be helpful to the reduction of energy consumption to compare the calculated and measured values of the temperature change of salt bath through the heat balance review at the early stage of electrolysis and to evaluate the energy loss to outside. In this study, based on the authors' experimental data, the heat balance was reviewed at the beginning of the electrolysis, and it was possible to evaluate the energy loss to the outside and the increase of the temperature of the salt bath quantitatively. Through such a method, heat loss reduction plan can be derived and current efficiency can be improved so that energy consumption can be reduced.

Durability Evaluation of concrete using fly ash (플라이애시 혼입 콘크리트의 내구성 평가)

  • 조명석;송영철;류금성;고경택;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.755-760
    • /
    • 2002
  • The concrete structures in marine environment has been used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, the question has been raised for effect of the resistance to salt attack of the concrete using type V cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. Therefore, this study focused on the durability evaluation of concrete containing fly ash under marine environment, and the tests such as salt attack, carbonation, sulfate attack, and freezing-thawing were performed. Test results showed t]hat the resistance to salt attack, sulfate attack and freezing-thawing was improved, and the carbonation was in some disadvantage compared with normal concrete. Nevertheless, the durability of fly ash concrete would be maintained during the service life of structures.

  • PDF