• Title/Summary/Keyword: Mineral Cycles

Search Result 77, Processing Time 0.021 seconds

Evaluation on Basic Properties of Crushed Sand Mortar in Freezing-Thawing and Sulfate Attack (동결융해와 황산염의 복합작용을 받는 부순모래 모르타르의 기초 특성 평가)

  • Kim, Myeong-Sik;Baek, Dong-Il;Choi, Kang-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2009
  • Exposed to various environments, concrete confronts degradation by a lot of physical and chemical reaction. Though so many experiments and theorizations on the single condition of concrete degradation have been carried out by constant studies, the truth for now is that there are few studies on the compound phenomenon of degradation related with marine environments. Accordingly, this study measured the degree of degradation in the change of external shape, the change of unit weight and compressive strength, ultrasonic velocity test, and the change of length, etc. after exposing the specimen of cement mortar to the environment between 0 cycle and the maximum of 300 cycles under the condition of aquatic curing, freezing and thawing, and compound degradation, using mineral admixture effective for concrete degradation as a binder. The result indicated that the case of adding mineral admixture showed greater resistance than that of using OPC only, and specifically, the specimen with the additive of slag powder and three component system showed very excellent resistance to freezing and thawing, and compound degradation.

Preparation of V2O5-Graphene Composites using Aerosol Process for Supercapacitors Application (에어로졸 공정을 이용한 오산화바나듐(V2O5)-그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2020
  • Vanadium Pentoxide (V2O5) has been emerged as alternative electrode materials for supercapacitors due to their low cost, natural abundance, and environmental friendliness. Graphene (GR) loaded with V2O5 can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with V2O5. The V2O5-graphene composites were synthesized from a colloidal mixture of graphene oxide (GO) and Ammonium metavanadate (NH4VO3), via aerosol spray drying and post heat treatment process. The average size of composite was ranged from 1.82 to 4.6 ㎛. Morphology of the composite changed from a crumpled paper ball to spherical ball having relatively smooth surface as the content of V2O5 increased in the composites. The electrochemical performance of the V2O5-graphene composites was examined. The V2O5-graphene composite electrode showed the specific capacitance of 312 F/g. In addition, the device possessed acceptable cyclic stability, with 84% after 2000 cycles at 2 A/g. These outstanding properties are expected to make the composites prepared in this study as promising electrode materials for supercapacitor applications.

CLSM Analysis of Change in Roughness and Physical Properties of Granite after Freeze-Thaw Experiments (CLSM을 이용한 동결/융해 실험 후 화강암 시료의 표면 및 물성변화 분석)

  • Jeong, Jongtaek;Choi, Junghae;Chae, Byung-Gon;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • Freeze-thaw experiments were conducted to evaluate changes in surface roughness and physical properties in samples of granite from Ilgwang and Imki mines, Korea. The temperature range in the experiments was $-20^{\circ}C$ to $40^{\circ}C$, based on typical summer and winter temperatures in Korea, and the surface was observed every 20 cycles. One cycle comprised 1 hour of heating or cooling of the samples and 1 hour during which the target temperature was maintained. With increasing repetitions of the freeze-thaw experiment, porosity increased by 0.05%-0.15% in the two samples and the dry weight increased, whereas the volume of the soil and saturation weight decreased. Observations by confocal laser scanning microscope (CLSM) revealed that line and surface roughness parameters showed a tendency to increase and decrease, respectively, with elapsed time. Changes in surface roughness were apparent on the CLSM images.

A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process (매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구)

  • Son, Eun Nam;Baek, Seung Hun;Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigated the feasibility of $CaSnO_3$ particles as an oxygen carrier in chemical looping combustion (CLC). $CaSnO_3$ particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After $10^{th}$ cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, $CaSnO_3$ particles could be a good alternative material as an oxygen carrier in CLC.

Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors (고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작)

  • Son, Seon Gyu;Kim, Seo Jin;Shin, Junho;Ryu, Taegon;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.403-408
    • /
    • 2021
  • In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 µF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.

The Energy Flow and Mineral Cycles in a Zoysia japonica and Miscanthus sinensis Ecosystem on Mt. Kwanak 1. The Standing Crop and Production Structure (관악산의 잔디와 억새 생태계에 있어서 에너지의 흐름과 무기물의 순환 1. 현존량과 물질 생산구조)

  • 장남기;김정석;심규철;강경미
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 1995
  • A Zoysia japonica and Miscanthus sinensis grasslands of north-west side on Mt. Kwanak were investigated The most important species in this area were Zoysia japonica and Miscanthus sinensis These two species contributed greatly to the standing crops of live material, which were in excess of 598. 4g /$m^2$ and 698. 7g /$m^2$ during the growing season, respectively. This value would he ucreased if the production of the moss and algal mats which cover the soil surface during the growing season was included. The productive structures of the Zoysia japonica and Mliscanthus si nen sis grasslands were short and long height types of the grasslands, respectively. Key words: Standing crop, Production structure.

  • PDF

Effect of Repetitive Redox Transitions to Soil Bacterial Community and its Potential Impact on the Cycles of Iron and Arsenic (비소오염토양에서 반복적인 Redox 환경 변화가 토양 미생물 군집과 비소 및 철의 순환에 미치는 영향)

  • Park, Sujin;Kim, Sanghyun;Chung, Hyeonyong;Chang, Sun Woo;Moon, Heesun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • In a redox transition zone, geochemical reactions are facilitated by active bacteria that mediate reactions involving electrons, and arsenic (As) and iron (Fe) cycles are the major electron transfer reactions occurring at such a site. In this study, the effect of repetitive redox changes on soil bacterial community in As-contaminated soil was investigated. The results revealed that bacterial community changed actively in response to redox changes, and bacterial diversity gradually decreased as the cycle repeated. Proportion of strict aerobes and anaerobes decreased, while microaerophilic species such as Azospirillum oryzae group became the predominant species, accounting for 72.7% of the total counts after four weeks of incubation. Bacterial species capable of reducing Fe or As (e.g., Clostridium, Desulfitobacterium) belonging to diverse phylogenetic groups were detected. Indices representing richness (i.e., Chao 1) and phylogenetic diversity decreased from 1,868 and 1,926 to 848 and 1,121, respectively. Principle component analysis suggests that repetitive redox fluctuation, rather than oxic or anoxic status itself, is an important factor in determining the change of soil bacterial community, which in turn affects the cycling of As and Fe in redox transition zones.

Effects of Mineral Trioxide Aggregate on the Proliferation and Differentiation of Human Dental Pulp Stromal Cells from Permanent and Deciduous Teeth (Mineral trioxide aggregate가 유치 및 영구치의 치수기질세포 증식 및 분화에 미치는 영향)

  • Kim, Seunghye;Jeon, Mijeong;Shin, Dong Min;Lee, Jae Ho;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.185-193
    • /
    • 2013
  • Mineral trioxide aggregate (MTA) has recently been used as a pulpotomy medicament for primary molars. The aim of this study was to evaluate and compare the proliferation and differentiation potential of dental pulp stromal cells of permanent teeth and deciduous teeth cultured on MTA-coated surface. Human dental pulp stromal cells were obtained from human permanent premolars and deciduous teeth and cultured on MTA-coated culture plates. The cells were subjected to proliferation assay and cell cycle analysis. Their differentiation potential was evaluated by analysing changes in the mRNA expressions of runt-related transcriptional factor 2 (Runx2) and alkaline phosphatase (ALP). Morphological changes of cells in direct contact with MTA were observed using scanning electron microscopy (SEM). The proliferation rates, distribution of cell cycles and mRNA expression patterns of Runx2 and ALP were similar in both types of pulpal cells. SEM observations revealed that both types changed into more dendrite-like cells. On the surface of MTA, human dental pulp stromal cells from deciduous and permanent teeth were able to both proliferate and differentiate into cells that induce mineralization. MTA is suitable as a biocompatible pulpotomy medicament for primary teeth.

Analysis on New Research Opportunities and Strategies for Earth Sciences in the United States (미국 지질과학분야 신규 연구주제 및 전략분석)

  • Kim, Seong-Yong;Ahn, Eun-Young;Bae, Jun-Hee;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • The essential role of the Division of Earth Sciences(EAR) in the Directorate of Geoscience(GEO) of National Science Foundation of America(NSF) is to support basic research aimed at acquiring fundamental knowledge of the Earth system that can be directly applied to the United States' strategic needs. The 2011 Committee on New Research Opportunities in the Earth Sciences(NROES) of the National Academy of Sciences(NAS) identified specific areas of the basic earth science research scope of the EAR that were poised for rapid progress during the next decade. Quantified by interdisciplinary approaches, the Committee highlighted the following topics relating to the EAR Deep Earth Processes and Surface Earth Processes sections: (1) the early Earth; (2) thermochemical internal dynamics and volatile distribution; (3) faulting and deformation processes; (4) interactions among climate, the Earth surface processes, tectonics, and deep Earth processes; (5) co-evolution of life, environment, and climate; (6) coupled hydrogeomorphic-ecosystem response to natural and anthropogenic change; and (7) interactions of biogeochemical and water cycles in terrestrial environments. We also promote future research challenges such as the critical zone studies. In order to promote more active such a huge future research challenges, additional research support policies are needed.

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.