DOI QR코드

DOI QR Code

Preparation of V2O5-Graphene Composites using Aerosol Process for Supercapacitors Application

에어로졸 공정을 이용한 오산화바나듐(V2O5)-그래핀 복합체 제조 및 슈퍼커패시터 응용

  • Lee, Chongmin (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 이총민 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Received : 2020.11.30
  • Accepted : 2020.12.14
  • Published : 2020.12.31

Abstract

Vanadium Pentoxide (V2O5) has been emerged as alternative electrode materials for supercapacitors due to their low cost, natural abundance, and environmental friendliness. Graphene (GR) loaded with V2O5 can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with V2O5. The V2O5-graphene composites were synthesized from a colloidal mixture of graphene oxide (GO) and Ammonium metavanadate (NH4VO3), via aerosol spray drying and post heat treatment process. The average size of composite was ranged from 1.82 to 4.6 ㎛. Morphology of the composite changed from a crumpled paper ball to spherical ball having relatively smooth surface as the content of V2O5 increased in the composites. The electrochemical performance of the V2O5-graphene composites was examined. The V2O5-graphene composite electrode showed the specific capacitance of 312 F/g. In addition, the device possessed acceptable cyclic stability, with 84% after 2000 cycles at 2 A/g. These outstanding properties are expected to make the composites prepared in this study as promising electrode materials for supercapacitor applications.

Keywords

References

  1. Adhikari, A.D., Oraon, R., Tiwari, S.K., Lee, J.H., Kim, N.H., and Nayak, G.C. (2017). A V2O5 nanorod decorated graphene/polypyrrole hybrid electrode: a potential candidate for supercapacitors, New Journal of Chemistry, 41(4), 1704-1713. https://doi.org/10.1039/C6NJ03580A
  2. Huang, H., Zhang, J., Jiang, L., and Zang, Z. (2017). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B, Journal of Alloys and Compounds, 718, 112-115. https://doi.org/10.1016/j.jallcom.2017.05.132
  3. Hummers Jr, W.S., and Offeman, R.E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
  4. Jin, H., Yuan, D., Zhu, S., Zhu, X., and Zhu, J. (2018). Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors, Dalton Transactions, 47(26), 8706-8715. https://doi.org/10.1039/c8dt01882k
  5. Kudo, T., Ikeda, Y., Watanabe, T., Hibino, M., Miyayama, M., Abe, H., and Kajita, K. (2002). Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152, 833-841. https://doi.org/10.1016/S0167-2738(02)00383-1
  6. Lee, C., Chang, H., and Jang, H.D. (2017). Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application, Particle and Aerosol Research, 13(1), 33-40. https://doi.org/10.11629/jpaar.2017.3.31.033
  7. Lee, C., Jo, E.H., Kim, S.K., Choi, J.H., Chang, H., and Jang, H.D. (2017). Electrochemical performance of crumpled graphene loaded with magnetite and hematite nanoparticles for supercapacitors, Carbon, 115, 331-337. https://doi.org/10.1016/j.carbon.2017.01.019
  8. Lian, Y.M., Ni, M., Zhou, L., Chen, R.J., and Yang, W. (2018). Synthesis of Biomass-Derived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications, Chemistry-A European Journal, 24(68), 18068-18074. https://doi.org/10.1002/chem.201803836
  9. Luo, J., Jang, H.D., Sun, T., Xiao, L., He, Z., Katsoulidis, A.P., and Huang, J. (2011). Compression and aggregation-resistant particles of crumpled soft sheets, ACS Nano, 5(11), 8943-8949. https://doi.org/10.1021/nn203115u
  10. Nagaraju, D.H., Wang, Q., Beaujuge, P., and Alshareef, H.N. (2014). Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors, Journal of Materials Chemistry A, 2(40), 17146-17152. https://doi.org/10.1039/C4TA03731F
  11. Park, Y.J., Kim, J.H., Lee, K., and Lee, S.M. (2020). Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance, Korean Chemical Engineering Research, 58(1), 135-141.
  12. Rehder, D. (2013). The future of/for vanadium, Dalton Transactions, 42(33), 11749-11761. https://doi.org/10.1039/c3dt50457c
  13. Sahu, V., Goel, S., Tomar, A.K., Singh, G., and Sharma, R.K. (2017). Graphene nanoribbons@vanadium oxide nanostrips for supercapacitive energy storage, Electrochimica Acta, 230, 255-264. https://doi.org/10.1016/j.electacta.2017.01.188
  14. Saravanakumar, B., Purushothaman, K.K., and Muralidharan, G. (2012). Interconnected V2O5 nanoporous network for high-performance supercapacitors, ACS Applied Materials and Interfaces, 4(9), 4484-4490. https://doi.org/10.1021/am301162p
  15. Simon, P., and Gogotsi, Y. (2008). Materials for electrochemical capacitors, Nature Materials, 7, 845-854. https://doi.org/10.1038/nmat2297
  16. Wang, C.C., Chen, H.C., and Lu, S.Y. (2014). Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material, Chemistry-A European Journal, 20(2), 517-523. https://doi.org/10.1002/chem.201303483
  17. Wang, G., Zhang, L., and Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41(2), 797-828. https://doi.org/10.1039/c1cs15060j
  18. Wei, D., Scherer, M.R., Bower, C., Andrew, P., Ryhanen, T., and Steiner, U. (2012). A nanostructured electrochromic supercapacitor, Nano Letters, 12(4), 1857-1862. https://doi.org/10.1021/nl2042112
  19. Wei, J., Zang, Z., Zhang, Y., Wang, M., Du, J., and Tang, X. (2017). Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites, Optics Letters, 42(5), 911-914. https://doi.org/10.1364/OL.42.000911
  20. Wu, C., Feng, F., and Xie, Y. (2013). Design of vanadium oxide structures with controllable electrical properties for energy applications, Chemical Society Reviews, 42(12), 5157-5183. https://doi.org/10.1039/c3cs35508j
  21. Wu, Z.S., Zhou, G., Yin, L.C., Ren, W., Li, F., and Cheng, H.M. (2012). Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1(1), 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
  22. Yan, Y., Li, B., Guo, W., Pang, H., and Xue, H. (2016). Vanadium based materials as electrode materials for high performance supercapacitors, Journal of Power Sources, 329, 148-169. https://doi.org/10.1016/j.jpowsour.2016.08.039
  23. Yilmaz, G., Lu, X., and Ho, G.W. (2017). Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance, Nanoscale, 9(2), 802-811. https://doi.org/10.1039/C6NR08233E
  24. Yuan, Y., Zhu, W., Du, G., Wang, D., Zhu, J., Zhu, X., and Pezzotti, G. (2018). Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors, Electrochimica Acta, 282, 286-294. https://doi.org/10.1016/j.electacta.2018.06.006
  25. Zhao, X., Sanchez, B.M., Dobson, P.J., and Grant, P.S. (2011). The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3(3), 839-855. https://doi.org/10.1039/c0nr00594k