References
- Adhikari, A.D., Oraon, R., Tiwari, S.K., Lee, J.H., Kim, N.H., and Nayak, G.C. (2017). A V2O5 nanorod decorated graphene/polypyrrole hybrid electrode: a potential candidate for supercapacitors, New Journal of Chemistry, 41(4), 1704-1713. https://doi.org/10.1039/C6NJ03580A
- Huang, H., Zhang, J., Jiang, L., and Zang, Z. (2017). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B, Journal of Alloys and Compounds, 718, 112-115. https://doi.org/10.1016/j.jallcom.2017.05.132
- Hummers Jr, W.S., and Offeman, R.E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
- Jin, H., Yuan, D., Zhu, S., Zhu, X., and Zhu, J. (2018). Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors, Dalton Transactions, 47(26), 8706-8715. https://doi.org/10.1039/c8dt01882k
- Kudo, T., Ikeda, Y., Watanabe, T., Hibino, M., Miyayama, M., Abe, H., and Kajita, K. (2002). Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152, 833-841. https://doi.org/10.1016/S0167-2738(02)00383-1
- Lee, C., Chang, H., and Jang, H.D. (2017). Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application, Particle and Aerosol Research, 13(1), 33-40. https://doi.org/10.11629/jpaar.2017.3.31.033
- Lee, C., Jo, E.H., Kim, S.K., Choi, J.H., Chang, H., and Jang, H.D. (2017). Electrochemical performance of crumpled graphene loaded with magnetite and hematite nanoparticles for supercapacitors, Carbon, 115, 331-337. https://doi.org/10.1016/j.carbon.2017.01.019
- Lian, Y.M., Ni, M., Zhou, L., Chen, R.J., and Yang, W. (2018). Synthesis of Biomass-Derived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications, Chemistry-A European Journal, 24(68), 18068-18074. https://doi.org/10.1002/chem.201803836
- Luo, J., Jang, H.D., Sun, T., Xiao, L., He, Z., Katsoulidis, A.P., and Huang, J. (2011). Compression and aggregation-resistant particles of crumpled soft sheets, ACS Nano, 5(11), 8943-8949. https://doi.org/10.1021/nn203115u
- Nagaraju, D.H., Wang, Q., Beaujuge, P., and Alshareef, H.N. (2014). Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors, Journal of Materials Chemistry A, 2(40), 17146-17152. https://doi.org/10.1039/C4TA03731F
- Park, Y.J., Kim, J.H., Lee, K., and Lee, S.M. (2020). Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance, Korean Chemical Engineering Research, 58(1), 135-141.
- Rehder, D. (2013). The future of/for vanadium, Dalton Transactions, 42(33), 11749-11761. https://doi.org/10.1039/c3dt50457c
- Sahu, V., Goel, S., Tomar, A.K., Singh, G., and Sharma, R.K. (2017). Graphene nanoribbons@vanadium oxide nanostrips for supercapacitive energy storage, Electrochimica Acta, 230, 255-264. https://doi.org/10.1016/j.electacta.2017.01.188
- Saravanakumar, B., Purushothaman, K.K., and Muralidharan, G. (2012). Interconnected V2O5 nanoporous network for high-performance supercapacitors, ACS Applied Materials and Interfaces, 4(9), 4484-4490. https://doi.org/10.1021/am301162p
- Simon, P., and Gogotsi, Y. (2008). Materials for electrochemical capacitors, Nature Materials, 7, 845-854. https://doi.org/10.1038/nmat2297
- Wang, C.C., Chen, H.C., and Lu, S.Y. (2014). Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material, Chemistry-A European Journal, 20(2), 517-523. https://doi.org/10.1002/chem.201303483
- Wang, G., Zhang, L., and Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41(2), 797-828. https://doi.org/10.1039/c1cs15060j
- Wei, D., Scherer, M.R., Bower, C., Andrew, P., Ryhanen, T., and Steiner, U. (2012). A nanostructured electrochromic supercapacitor, Nano Letters, 12(4), 1857-1862. https://doi.org/10.1021/nl2042112
- Wei, J., Zang, Z., Zhang, Y., Wang, M., Du, J., and Tang, X. (2017). Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites, Optics Letters, 42(5), 911-914. https://doi.org/10.1364/OL.42.000911
- Wu, C., Feng, F., and Xie, Y. (2013). Design of vanadium oxide structures with controllable electrical properties for energy applications, Chemical Society Reviews, 42(12), 5157-5183. https://doi.org/10.1039/c3cs35508j
- Wu, Z.S., Zhou, G., Yin, L.C., Ren, W., Li, F., and Cheng, H.M. (2012). Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1(1), 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
- Yan, Y., Li, B., Guo, W., Pang, H., and Xue, H. (2016). Vanadium based materials as electrode materials for high performance supercapacitors, Journal of Power Sources, 329, 148-169. https://doi.org/10.1016/j.jpowsour.2016.08.039
- Yilmaz, G., Lu, X., and Ho, G.W. (2017). Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance, Nanoscale, 9(2), 802-811. https://doi.org/10.1039/C6NR08233E
- Yuan, Y., Zhu, W., Du, G., Wang, D., Zhu, J., Zhu, X., and Pezzotti, G. (2018). Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors, Electrochimica Acta, 282, 286-294. https://doi.org/10.1016/j.electacta.2018.06.006
- Zhao, X., Sanchez, B.M., Dobson, P.J., and Grant, P.S. (2011). The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3(3), 839-855. https://doi.org/10.1039/c0nr00594k