• Title/Summary/Keyword: Mindlin plate

Search Result 179, Processing Time 0.022 seconds

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F. (회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석)

  • 최창근;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF

The Analysis of Smart Plate Using Enhanced First Shear Deformation Theory (개선된 일차전단변형이론을 이용한 지능구조평판의 거동해석)

  • Oh, Jin-Ho;Kim, Heung-Su;Rhee, Seung-Yun;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.663-668
    • /
    • 2007
  • An enhanced first shear deformation theory for composite plate is developed. The detailed process is as follows. Firstly, the theory is formulated by modifying higher order zigzag theory. That is, the higher order theory is separated into the warping function representing the higher order terms and lower order terms. Secondly, the relationships between higher order zig-zag field and averaged first shear deformation field based on the Reissner-Mindlin's plate theory are derived. Lastly, the effective shear modulus is calculated by minimizing error between higher order energy and first order energy. Then the governing equation of FSDT is solved by substituting shear modulus into effective shear modulus. The recovery processing with the nodal unknown obtained from governing equation is performed. The accuracy of the present proposed theory is demonstrated through numerical examples. The proposed method will serve as a powerful tool in the prediction of laminated composite plate.

  • PDF

Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method

  • Civalek, Omer;Ersoy, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.411-422
    • /
    • 2008
  • In the present study, free vibration analysis of thick annular plates is analyzed by discrete singular convolution method. The Mindlin plate theory is employed. The material is isotropic, homogeneous and obeys Hook's law. In this paper, discrete singular convolution method is used for discretization of equations of motion. Axisymmetric frequency values are presented illustrating the effect of radius ratio and thickness to radius ratio of the annular plate. The influence of boundary conditions on the frequency characteristics is also discussed. Comparing results with those in the literature validates the present analysis. It is shown that the obtained results are very accurate by this approach.

Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.289-297
    • /
    • 2020
  • In the present research post-buckling of a cut out plate reinforced through carbon nanotubes (CNTs) resting on an elastic foundation is studied. Material characteristics of CNTs are hypothesized to be altered within thickness orientation which are calculated according to Mori-Tanaka model. For modeling the system mathematically, first order shear deformation theory (FSDT) is applied and using energy procedure, the governing equations can be derived. With respect to Rayleigh-Ritz procedure as well as Newton-Raphson iterative scheme, the motion equations are solved and therefore, post-buckling behavior of structure will be tracked. Diverse parameters as well as their reactions on post-buckling paths focusing cut out measurement, CNT's volume fraction and agglomeration, dimension of plate and an elastic foundation are investigated. It is revealed that presence of a square cut out can affect negatively post-buckling behavior of structure. Moreover, adding nanocompsits in the matrix leads to enhancement of post-buckling response of system.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis (명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.349-359
    • /
    • 2001
  • An enhanced four-node plate element, which has been developed for explicit dynamic analysis of plate, is described in this paper. Reissner-Mind1in(RM) assumptions are adopted to consider transverse shear deformation effects in the present plate element. RM plate element produces a shear locking phenomena in thin plate so that the substitute natural strains based on assumed strain method are explicitly derived. The present plate element is applied into the explicit transient algorithm and the mass matrix of plate is formulated by using special lumping method proposed by Hinton et al. The performance of the element is verified with numerical examples.

  • PDF

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Simulation of Woody Leaf Netted Venation Based on Optimization Technique (최적화기법에 의한 나뭇잎 그물맥 시뮬레이션)

  • Chen, Lei;Li, Weizheng;Jang, Gang Won;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

Eigenvalue Analysis of Stiffened Plates on Pasternak Foundations (Pasternak지반위에 놓인 보강판의 고유치해석)

  • Lee, Byoung-Koo;Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • This research analyzes eigenvalue analysis of stiffened plates on the Pasternak foundations using the finite clement method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity clement system and 3-nodes finite element system were used for plate and beam elements, respectively. Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundations is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in reference, experimental solutions and solutions obtained by SAP 2000. The natural frequency of stiffened plates on Pasternak foundations were determined according to changes or foundation parameters and dimensions of stiffener.