• Title/Summary/Keyword: Millimeter Wave Propagation

Search Result 53, Processing Time 0.026 seconds

Dielectric Waveguide Filters Design Embedded in PCB Substrates using Via Fence at Millimeter-Wave (밀리미터파 대역에서 Via Fence를 이용한 PCB 기판용 유전체 도파관 필터 설계)

  • 김봉수;이재욱;김광선;강민수;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, the implementation and embedding method of the existing air-filled waveguide-filters at millimeter-wave on general PCB substrate is introduced by systematically inserting the vias inside waveguide and mathematically manipulating the simple equations obtained ken the classical circular-post waveguide filter design. All the metal structures placed vertically such as side wall fur perfect ground plane and circular-post for signal control in the air-filled WR-22 waveguide are replaced with several types of via for constructing the bandpass-filter. Side wall and poles inside waveguide are realized by placing a series array of via and tuning the via diameter. The lengths of x, y, z axis are reduced in proportion to root square of employed substrate dielectric constant and especially the length of z axis can be more reduced due to the characteristics of the wave propagation. Because the mass production on PCB is possible without fabricating a large-scaled metal waveguide of WR-22 as input/output ports at millimeter-wave regime, the manufacturing cost is reduced considerably. Finally, when using multilayer process like LTCC for small-sized module, it is one of advantages to use only one layer f3r the filter fabrication. To evaluate the validity of this novel technique, order-3 Chebyshev BPF(Bandpass-Filter) centered at 40 GHz-band with a 2.5 % FBW (Fractional Bandwidth) were used. The employed substrate has relative dielectric constant of 2.2 and thickness of 10 mil of Rogers RT/Duroid 5880. Accroding to design and measurement results, a good performance of insertion loss of 2 ㏈ and return loss of -30 ㏈ is achieved at full input/output ports.

Simulation and measurement: Feasibility study of Tactile Internet applications for mmWave virtual reality

  • Na, Woongsoo;Dao, Nhu-Ngoc;Kim, Joongheon;Ryu, Eun-Seok;Cho, Sungrae
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Numerous wearable technology companies have recently developed several headmounted display (HMD) products for virtual reality (VR) services. 5G wireless networks aim at providing high-quality 3D multimedia services such as VR, augmented reality, and mixed reality. In this study, we examine the application of millimeter-wave (mmWave) technology to realize low-latency wireless communication between an HMD and its content server. However, the propagation characteristics of mmWave present several challenges such as the deafness, blockage, and beam alignment problems, and interference among content servers. In this study, we focus on an environment that provides VR services in the mmWave band and introduce existing techniques for addressing such challenges. In addition, we employ a commercialized IEEE 802.11ad VR dongle to measure the actual data rate of an mmWave VR application and identify the degree to which the performance deteriorates when the above problems occur. Finally, we verify the feasibility of the proposed solutions through a simulation of several VR scenarios in the mmWave band.

Development of Propagation Loss Prediction Software for the Indoor V-Band Millimeterwave Communication Environments (V-밴드 밀리미터파 대역의 실내 통신환경 분석을 위한 경로손실 예측 소프트웨어 개발)

  • Chun, Joong-Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • In this paper, we have developed a propagation loss prediction software with GUI (Graphic User Interface) functions, based on the geometrical ray optics model, which can predict radio parameters for the deployment of wireless indoor network. The program has two numerical modules consisted with electrical image and ray launching methods to implement UTD theory. The simulated results are compared with reported data measured in the foreign building environments for office and '一' type corridor, and measured and simulated results for the propagation loss agree with each other quite well. Simulation results for '一' type corridor and 'T' type corridor propagation environment are shown for reference.

  • PDF

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.

Feasibility Study on Tropospheric Attenuation Effect of Ku/V Band Signal for Korean Satellite Navigation System

  • Park, Jungkeun;Lee, Young Jae;Choi, Moonseok;Jang, Jae-Gyu;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • For next generation global navigation satellite systems, new carrier frequencies in Ku/V band are expected to emerge as a promising alternative to the current frequency windows in L band as they get severely congestive. In the case of higher frequency bands, signal attenuation phenomenon through the atmosphere is significantly different from the L band signal propagation. In this paper, a fundamental investigation is carried out to explore the Ku/V band as a candidate frequency band for a new global satellite navigation carrier signal, wherein specific attention is given to the effects of the dominant attenuation factors through the tropospheric propagation path. For a specific application, a candidate orbit preliminarily designed for the Korean regional satellite navigation system is adapted. Simulation results summarize that the Ku band can provide a promising satellite navigation implementation considering the present satellite's power budget, while the V band still requires technical advances in satellite transceiver system implementations.

Radio Propagation Characteristics of Different Frequency Bands in Multiple Paths According to Antenna Position in an Indoor Lobby Environment (실내 로비 환경에서 안테나 위치에 따른 다중 경로의 서로 다른 주파수 대역의 전파 특성)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The radio propagation characteristics of the 6, 10, and 17 GHz frequency bands in multiple paths in an indoor lobby environment were analyzed. The line-of-sight (LOS) and non-LOS (NLOS) paths were measured from a distance of 2-16 m (0.5 m intervals) from the transmitting to the receiving antenna positions. For basic transmission losses, three parameters were compared using the floating intercept path loss model corresponding to the path. For a root mean square delay spread, the measurement results were compared for cumulative probabilities of 10, 50, and 90%. Propagation loss and propagation delay occurred in all measured frequencies owing to the existence of pillars and an unusual lobby structure. Thus, a measurement scenario for an indoor lobby environment and the provision of standard measurement data was proposed. The results may facilitate research on the radio propagation characteristics of 5G and millimeter-wave bands in indoor lobby environments with various structures.

Study on the Chirped Waveform of the USPR Pulse using the Impulse Response of a Waveguide

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2010
  • In ultrashort-pulse reflectometry (USPR), a chirped waveform transformed from the USPR source impulse signal via waveguide makes it possible to employ millimeter-wave mixers for the frequency up-conversion process. Consequently, the frequency bandwidth of the USPR system is sufficiently wide to cover a large portion of the electron density profile of the plasma. Some physical aspects of the chirped waveform, such as maximum amplitude and length, are critical factors to determine the performance of the system. In this paper, the propagation of the USPR impulse signal through a rectangular waveguide is numerically studied to derive the chirped waveform using the impulse response of the waveguide. The results of numerical computation show that the chirped waveform significantly depends on the waveguide cutoff frequency as well as the waveguide length.

Fabrication of the Corrugated Feed Horn for 85~115GHz Radio Telescope System (85~115GHz 전파망원경용 컬러게이트 급전 혼 제작)

  • Son, Tae-Ho;Han, Seog-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.640-646
    • /
    • 2008
  • Design procedure of corrugated horn antenna for the mm-wave frequency range is presented, and hybrid condition in horn is calculated. In this paper, corrugate profiles of horn which satisfy both transition to balanced hybrid condition and fabrication possibility under the mm-wave short wavelength are obtained. Electromagnetic fields inside horn and corrugation are derived by the cylindrical mode theory. Propagation characteristics in the horn are calculated by the mode impedance matching method with boundary conditions, and radiation fields are obtained by the Kirchhoff-Hyugen principle to the horn aperture fields. A mm-wave corrugated horn antenna which operates on $85{\sim}115GHz$ is fabricated by electric forming method. Measurements show that VSWR is under 1.3:1 over whole band and the half power beamwidth on radiation pattern 9.2, 9.16 and 9.02 degree on 85, 100 and 110 GHz are agree well with theoretical calculation.

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.