• Title/Summary/Keyword: Millimeter Wave Horn

Search Result 18, Processing Time 0.021 seconds

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (혼 배열 안테나를 이용한 밀리미터파 수동 이미징 센서 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • We have designed a millimeter-wave passive imaging sensor with multi-horn antenna array. Six horn array antenna is suggested that it is integrated into one housing, and this antenna is effectively configurated m space to assemble with LNA of WR-10 structure. Antenna is designed to have the peak gain of 17.5dBi at the center frequency of 94GHz, and the return loss of less than -25dB in W-band, and the small aperture size of $6mm{\times}9mm$ for antenna configuration with high resolution. LNA is designed to have total gain of more than 55dB and noise figure of less than 5dB for good sensitivity. We made a detector for DC output translation of millimeter-wave signal with zero bias Schottky diode. It is shown that good sensitivity of more than 500mV/mW.

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (반사판을 이용한 밀리미터파 수동 이미징 시스템 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Jung, Kyung-Kwon;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • We have developed a millimeter-wave passive imaging system with reflector for detection of concealed objects. We have designed a millimeter-wave sensor, control device for reflector control, and a lens for focusing of millimeter-wave signal at center frequency of 94GHz. DC signal from millimeter-wave sensor output is filtered by low pass filter and amplified by video amplifier, and then converted into digital signal by using ADC/DAQ. This signal is image processed by computer, and it is possible to obtain millimeter-wave passive image with resolution of $18{\times}64$ pixel using the fabricated system. It is shown that we can obtain the image of men and concealed object with the system.

Wireless Communication using Millimeter-Wave Envelope Detector (밀리미터파 포락선 검파기를 이용한 무선통신)

  • Lee, Won-Hui;Jang, Sung-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.79-82
    • /
    • 2017
  • In this paper, we proposed the wireless communication system using millimeter-wave envelope detector. The sub-harmonic mixer based on schottky barrier diode was used in the transmitter. The receiver was used millimeter-wave envelope detector. The transmitter was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antenna. The receiver was composed of horn antenna, millimeter-wave envelope detector, low pass filter, base band amplifier, and limiting amplifier. At 1.485 Gbps and 300 GHz, the eye-diagram showed a very good performance as measured by the error free. Communication distance is reduced compared to the heterodyne receiver, but compact and lightweight is possible.

The design of Horn array antenna for 28GHz millimeter wave band (28GHz 밀리미터파대역 혼 어레이 안테나 설계)

  • Jin, Duck-Ho;Lee, Je-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 2022
  • In this paper, the relay antenna was designed in consideration of the performance of the 28GHz band 5G mobile communication relay horn antenna, such as radiation pattern and return loss. A horn array for 5G mobile communication repeater was designed by arranging the antenna elements in phase, and the performance was analyzed. Unlike conventional WCDMA (3G) and LTE (4G), in millimeter wave band communication, high path loss occurs between transmission and reception. In the design of a 5G millimeter wave horn antenna, antenna performance such as isolation and gain between antenna elements as well as gain and bandwidth of the antenna must be additionally considered. The antenna gain of the single horn antenna (1×1) and the array horn antenna (2×4) in the 28GHz band is about 10.44d Bi and 19.58dBi, respectively, and the return loss is designed to be less than -18dB. It has proven its validity and has been shown to be suitable for application to 5G mobile communication relay system.

Design Method for the Millimeter Wave Corrugated Feed Horn Antenna (mm파 컬러게이트 휘드 혼 안테나의 설계법)

  • Son, Tae-Ho;Park, Young-Tae;Han, Seog-Tae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.487-491
    • /
    • 2003
  • Design procedure of corrugated horn antenna for mm-wave frequency range is presented, and hybrid condition in horn is calculated. Balanced hybrid mode should be converted in the horn from TE11 mode by the proper corrugation dimensions which size are available to be fabricated under the mm-wave short wavelength condition. In this paper, corrugate profiles which satisfy both hybrid condition and fabrication possibility are obtained.. By cylindrical mode theory, the electromagnetic fields both inside hem and corrugation are delivered. Propagation characteristics in hem is calculated by the mode impedance matching method with boundary conditions, and radiation fields are obtained by the Kirchhoff-Hyugen principle to the hem aperture fields. A mm-wave corrugated horn operates on 85 - 115GHz is designed and fabricated, and results of measurement are also shown.

  • PDF

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

Design and manufacture of horn lens antennas of 80 GHz MM wave FMCW radar for cryogenic fluids level measurement

  • Jeon, S.M.;Mun, J.M.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • Recently, development of a cryogenic fluids storage tank for storing or transporting liquid hydrogen is actively in progress. In cryogenic fluids storage tanks, hydrogen evaporates due to the extreme temperature difference inside and outside the tank. As the mass of the cryogenic fluids changes with continuous vaporization, the fluids level also changes. Therefore, there is need for a method of accurately measuring the level change in the storage tank. In the case of general cryogenic fluids, it is difficult to accurately measure the level because the dielectric constant is very low. As a method of measuring cryogenic fluids level with low dielectric constant, it can be used an Millimeter wave (MM wave) FMCW radar sensor. However, the signal sensitivity is very weak and the level accuracy is poor. In this paper, the signal sensitivity is improved by designing the horn lens antenna of the existing 80 GHz FMCW radar sensor. Horn lens antenna is fabricated by FDM/SLA type 3D printer according to horn and lens characteristics. The horn is used to increase the signal gain and the lens improves the signal straightness. This makes it possible to measure the level of cryogenic fluids with a low dielectric constant.

Millimeter-wave directional-antenna beamwidth effects on the ITU-R building entry loss (BEL) propagation model

  • Lee, Juyul;Kim, Kyung-Won;Kim, Myung-Don;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Assuming omnidirectional antenna reception, the ITU-R recently developed a new propagation model on building entry loss (BEL) for 5G millimeter-wave frequency sharing and compatibility studies, which is a simplified outdoor-to-indoor path loss model. Considering the utilization of high-gain narrow-beamwidth beamforming, the omnidirectional-based ITU-R BEL model may not be appropriate to predict propagation characteristics for directional beamforming scenarios. This paper studies the effects of beamwidth on the ITU-R BEL model. This study is based on field measurements collected with four different beamwidth antennas: omnidirectional, 10° horn, 30° horn, and 60° horn. The measurement campaigns were conducted at two types of building sites: traditional and thermally efficient buildings. These sites, as well as the measurement scenarios, were carefully chosen to comply with the ITU-R BEL measurement guidelines and the ITU-R building types. We observed the importance of accurate beam alignment from the BEL variation range. We were able to quantify the beamwidth dependency by fitting to a model that is inversely proportional to the beamwidth.

Fabrication of the Corrugated Feed Horn for 85~115GHz Radio Telescope System (85~115GHz 전파망원경용 컬러게이트 급전 혼 제작)

  • Son, Tae-Ho;Han, Seog-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.640-646
    • /
    • 2008
  • Design procedure of corrugated horn antenna for the mm-wave frequency range is presented, and hybrid condition in horn is calculated. In this paper, corrugate profiles of horn which satisfy both transition to balanced hybrid condition and fabrication possibility under the mm-wave short wavelength are obtained. Electromagnetic fields inside horn and corrugation are derived by the cylindrical mode theory. Propagation characteristics in the horn are calculated by the mode impedance matching method with boundary conditions, and radiation fields are obtained by the Kirchhoff-Hyugen principle to the horn aperture fields. A mm-wave corrugated horn antenna which operates on $85{\sim}115GHz$ is fabricated by electric forming method. Measurements show that VSWR is under 1.3:1 over whole band and the half power beamwidth on radiation pattern 9.2, 9.16 and 9.02 degree on 85, 100 and 110 GHz are agree well with theoretical calculation.

Implementation of A Millimeter-Wave Multiflare-Angle Horn Antenna (밀리미터파 다중개구각 혼안테나 구현)

  • Oh, Kyung-Hyun;Kim, Ji-Hyung;Yang, Seung-Sik;Shin, Sang-Jin;Cho, Young-Ho;Lee, Byung-Ryul;Ahn, Bierng-Chearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • This paper presents an implementation of a millimeter-wave(W band) multiflare-angle horn antenna. The proposed antenna is a multimode dual-polarized square horn having equal E- and H-plane beamwidths and consists of a multimode generating section, a four-square-waveguide exciter, orthomode transducers, and power combiners for the sum pattern formation. The antenna structure has been designed to allow for easy fabrication and the designed antenna has been fabricated to a precision of ${\pm}0.02mm$ by layer-by-layer machining and diffusion bonding. The input reflection coefficient and the radiation pattern of the fabricated antenna have been measured using a network analyzer and a far-field test facility. Measurements show that the proposed antenna has 17.7~18.3 dBi gain, $25.2{\sim}28.5^{\circ}$ beamwidth, and an input VSWR between 1.02~1.75, within ${\pm}0.5GHz$ from the center frequency.