• Title/Summary/Keyword: Millimeter Scale

Search Result 47, Processing Time 0.025 seconds

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

A Study on the Machining Characteristics for Micro Endmilling by using Ultrahigh-Speed Air Turbine Spindle (초고속 스핀들에 의한 마이크로 엔드밀링의 가공특성에 관한 연구)

  • Kwon D.H.;Kang I.S.;Kim J.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. The appearance of ultra-precision feed mechanism and the development of control system make it possible to process parts in sub millimeter scale by mechanical methods. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. So, micro stairs have been trying to cut by using high revolution air turbine spindle and micro-endmill, and studying for magnitude of cutting force. This investigation deals removal characteristics of burr generated by micro endmilling process. Also, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. In micro endmilling, the material removal rate(MRR) and cutting forces are very small. This paper presents an investigation on the machining characteristics for micro stairs by using ultrahigh-speed air turbine spindle in machining.

  • PDF

2D Numerical Simulations of Bubble Flow in Straight Pipes (직관내 기포의 흐름에 대한 2차원 수치 모의)

  • Lee, Tae Yoon;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.386-390
    • /
    • 2016
  • Water aeration is an effective water treatment process, which involves the injection of air or air-water mixture into water treatment reservoir commonly through pipes. The main purpose of water aeration is to maintain healthy levels of dissolved oxygen (DO), which is the most important water quality factor. The pipes' operating conditions are important for controlling the efficiency and effectiveness of aeration process. Many studies have been conducted on two-phase flows in pipes, however, there are a few studies to deal with small s ale in millimeter. The main objective of this study is to perform 2-dimensional two-phase simulations inside various straight pipes using the computational fluid dynamic (CFD) OpenFOAM (Open source Field Operation And Manipulation) tools to examine the influence of flow patterns on bubble size, which is closely related to DO concentration in a water body. The both flow regimes, laminar and turbulence, have been considered in this study. For turbulence, Reynolds-averaged Navier-Stokes (RANS) has been applied. The coalescence and breakage of bubbles caused by random collisions and turbulent eddies, respectively, are considered in this research. Sauter mean bubble diameter and water velocity are compared against experimental data. The simulation results are in good agreement with the experimental measurements.

  • PDF

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Gha-Young Kim;Jeong-Hyun Woo;Junhyuk Jang;Yang-Il Jung;Young-Ho Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.211-217
    • /
    • 2024
  • The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

Interferometric Monitoring of Gamma-ray Bright AGNs: S5 0716+714

  • Lee, Sang-Sung;Lee, Jee Won;Hodgson, Heffrey A.;Kim, Dae-Won;Algaba, Juan-Carlos;Kang, Sincheol;Kang, Jiman;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.3-29
    • /
    • 2017
  • We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of the KVN key science program known as the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA). Multi-frequency VLBI observations were conducted in 29 sessions from January 16, 2013 to March 1, 2016. The source was detected and imaged in all available frequency bands. For all observed epochs, the source is compact on the milliarcsecond (mas) scale, yielding a compact VLBI core dominating the synchrotron emission on the mas scale. Based on the multi-wavelength data at 15 and 230 GHz, we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements with a time lag of $18{\pm}5$ days. Turnover frequency is found to vary over our observations between 22 to 69GHz. Taking into account the synchrotron self-absorption model of the relativistic jet in S5 0716+714, we estimated the magnetic field strength in the mas emission region to be 0.4-66 mG during the observing period, finding that the magnetic field strength is strongly correlated with the turnover frequency and the relatively strong magnetic field (e.g., B > 40 mG) is correlated with flux enhancements at mm wavelengths (e.g., 86 GHz).

  • PDF

Flux Variation and Structural Change in 3C 84 with Long-Term Monitoring by KVN and KaVA at Millimeter Wavelengths

  • Wajima, Kiyoaki;Kino, Motoki;Kawakatu, Nozomu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.45.2-46
    • /
    • 2017
  • 3C 84 (NGC 1275) is one of the most famous radio galaxies and a lot of VLBI observations have been conducted to date because of its brightness and proximity (z = 0.0176; 1 mas = 0.36 pc). The source is entering a significantly active phase with long-term increase in radio flux at cm wavelengths since 2005, and the increased activity at very-high-energy (VHE) gamma rays. In order to study properties of sub-pc-scale structure and the circumnuclear environment in 3C 84, we have conducted multi-epoch VLBI observations with the Korean VLBI Network (KVN) at 86 and 129 GHz, and monthly monitoring by the KVN and VERA Array (KaVA) at 43 GHz from 2015 August. Following the report in the previous KAS meeting (cf. 2016 KAS Autumn Annual Meeting, [구 GC-10]), we present further results mainly on the basis of twelve-epoch observations with KaVA at 43 GHz. Through the monthly monitoring with KaVA, we found that peak intensity of the pc-scale southern lobe (C3) was increased from $2.60\;Jy\;beam^{-1}$ in 2015 October to $9.80\;Jy\;beam^{-1}$ in 2016 June, corresponding to a flux increase of 3.7 times in eight months. We also detected change in direction of motion of C3 from transversal to outward with respect to C1, concurrently with the beginning of its flux increase in 2015 October. We consider that these phenomena are due to interaction of C3 with the ambient medium, and are related to the gamma-ray flare which has been detected with VHE gamma-ray telescopes such as MAGIC and VERITAS.

  • PDF

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석)

  • Kim, Jiyoung;Choi, Young Cheol;Choi, Seongcheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF