DOI QR코드

DOI QR Code

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng (Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China) ;
  • Zhang, Shuai (Laser Fusion Research Center, China Academy of Engineering Physics) ;
  • Xie, Mengmeng (School of Mechanical Engineering, Jiangnan University) ;
  • Li, Jing (Laser Fusion Research Center, China Academy of Engineering Physics) ;
  • Li, Ning (Laser Fusion Research Center, China Academy of Engineering Physics) ;
  • Yin, Qiang (Laser Fusion Research Center, China Academy of Engineering Physics) ;
  • He, Zhibing (Laser Fusion Research Center, China Academy of Engineering Physics) ;
  • Zhang, Lin (Laser Fusion Research Center, China Academy of Engineering Physics)
  • Received : 2022.02.06
  • Accepted : 2022.05.11
  • Published : 2022.08.25

Abstract

Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Keywords

Acknowledgement

Applied Basic Research Program of Sichuan Province (no. 2019YJ003); State Key Laboratory of Environment-friendly Energy Materials (no. 19kfhg01); National Natural Science Foundation of China (no. 51803198); and Presidential Foundation of China Academy of Engineering Physics (no. YZJJLX2020008).

References

  1. M. Goppert-Mayer, "Uber elementarakte mit zwei quantensprungen," Ann. Phys. 9, 273-294 (1931). https://doi.org/10.1002/andp.19314010303
  2. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). https://doi.org/10.1038/35089130
  3. S. Maruo and S. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-415 (1999). https://doi.org/10.1109/84.735349
  4. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989). https://doi.org/10.1126/science.245.4920.843
  5. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999). https://doi.org/10.1038/17989
  6. X. P. Yuan, M. Zhao, X. Guo, M. Zhao, X. J. Guo, Y. Li, Y. Yu, Z. S. Gan, and H. Ruan, "Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape," Opt. Lett. 45, 1535-1538 (2020). https://doi.org/10.1364/ol.387278
  7. J. Cai and W. Huang, "Two-photon three-dimensional optical storage of a new pyrimidine photobleaching material," Optik 126, 343-346 (2015). https://doi.org/10.1016/j.ijleo.2014.09.003
  8. E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, "Three-dimensional microfabrication through a multimode optical fiber," Opt. Express 25, 7031-7045 (2017). https://doi.org/10.1364/OE.25.007031
  9. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, "Two-photon direct laser writing of ultracompact multi-lens objectives," Nat. Photonics 10, 554-560 (2016). https://doi.org/10.1038/nphoton.2016.121
  10. R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, G. Schmid, W. Leeb, and W. Kern, "Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups," Appl. Opt. 52, 388-393 (2013). https://doi.org/10.1364/AO.52.000388
  11. S. Bichler, S. Feldbacher, R. Woods, V. Satzinger, V. Schmidt, G. Jakopic, G. Langer, and W. Kern, "Functional flexible organic-inorganic hybrid polymer for two photon patterning of optical waveguides," Opt. Mater. 34, 772-780 (2012). https://doi.org/10.1016/j.optmat.2011.11.007
  12. J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, "Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes," Sci. Rep. 8, 14789 (2018). https://doi.org/10.1038/s41598-018-32407-0
  13. J.-F. Xing, M.-L. Zheng, and X.-M. Duan, "Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery," Chem. Soc. Rev. 44, 5031-5039 (2015). https://doi.org/10.1039/c5cs00278h
  14. K. Moussi, A. Bukhamsin, T. Hidalgo, and J. Kosel, "Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications," Adv. Eng. Mater. 22, 1901358 (2020). https://doi.org/10.1002/adem.201901358
  15. E. Balciunas, S. J. Baldock, N. Dreize, M. Grubliauskaite, S. Coultas, D. L. Rochester, M. Valius, J.G. Hardy, and D. Baltriukiene, "3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization," Polym. Int. 68, 1928-1940 (2019). https://doi.org/10.1002/pi.5909
  16. T. Weiss, R. Schade, T. Laube, A. Berg, G. Hildebrand, R Wyrwa, M. Schnabelrauch, and K. Liefeith, "Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces," Adv. Eng. Mater. 13, 264-273 (2011).
  17. X. Wang, Z. Wei, C. Z. Baysah, M. Zheng, and J. Xing, "Biomaterial-based microstructures fabricated by two-photon polymerization microfabrication technology," RSC Adv. 9, 34472-34480 (2019). https://doi.org/10.1039/c9ra05645a
  18. G. D. Giustina, A. Gandin, L. Brigo, T. Panciera, S. Giulitti, P. Sgarbossa, D. D'Alessandro, L. Trombi, S. Danti, and G. Brusatin, "Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds," Mater. Des. 165, 107566 (2019). https://doi.org/10.1016/j.matdes.2018.107566
  19. H. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Ye, S. Matsuo, and H. Misawa, "Microcavities in polymeric photonic crystals," Appl. Phys. Lett. 79, 1-3 (2001). https://doi.org/10.1063/1.1381035
  20. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). https://doi.org/10.1038/nmat1155
  21. Z.-C. Ma, Y.-L. Zhang, B. Han, X.-Y. Hu, C.-H. Li, Q.-D. Chen, and H.-B. Sun, "Femtosecond laser programmed artificial musculoskeletal systems," Nat. Commun. 11, 4536 (2020). https://doi.org/10.1038/s41467-020-18117-0
  22. Y.-L. Zhang, Y. Tian, H. Wang, Z.-C Ma, D.-D. Han, L.-G. Niu, Q.-D. Chen, and H.-B. Sun, "Dual-3D femtosecond laser nanofabrication enables dynamic actuation," ACS Nano 13, 4041-4048 (2019). https://doi.org/10.1021/acsnano.8b08200
  23. B. Xu, Y. Shi, Z. X. Lao, J. C. Ni, G. Q. Li, Y. L. Hu, J. W. Li, J. R. Chu, D. Wu, and K. Sugiokac, "Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging," Lab Chip 18, 442-450 (2018). https://doi.org/10.1039/C7LC01080J
  24. Y. Yang, Y. Zhang, Y. Hu, G. Li, C. Zhang, Y. Song, L. Li, C. Ni, N. Dai, Y. Cai, J. Li, D. Wu, and J. Chu, "Femtosecond laser regulated ultrafast growth of mushroom-like architecture for oil repellency and manipulation," Nano Lett. 21, 9301-9309 (2021). https://doi.org/10.1021/acs.nanolett.1c03506
  25. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, "Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal," Nature Photonics 12, 596-600 (2018). https://doi.org/10.1038/s41566-018-0240-2
  26. Y. Hu, H. Yuan, S. Liu, J. Ni, Z. Lao, C. Xin, D. Pan, Y. Zhang, W. Zhu, J. Li, D. Wu, and J. Chu, "Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force," Adv. Mater. 32, 2002356 (2020). https://doi.org/10.1002/adma.202002356
  27. D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, "Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip," Laser Photonics Rev. 8, 458-467 (2014). https://doi.org/10.1002/lpor.201400005
  28. X. L. Ren, M. L. Zheng, F. J., Y. Y. Zhao, X. Z. Dong, J. Liu, H. Yu, X. M. Duan, Z. S. Zhao, "Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction," J. Phys. Chem. C 120, 26532-26538 (2016). https://doi.org/10.1021/acs.jpcc.6b08395
  29. Y.-H. Liu, Y.-Y. Zhao, F. Jin, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "λ/12 Super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning," Nano Lett. 21, 3915-3921 (2021). https://doi.org/10.1021/acs.nanolett.1c00559
  30. C. Zheng, F. Jin, Y. Zhao, M. Zheng, J. Liu, X. Dong, Z. Xiong, Y. Xia, and X. Duan, "Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication," Sens. Actuators B: Chem 304, 127345 (2020). https://doi.org/10.1016/j.snb.2019.127345
  31. J. Zhu, Q. Zhang, T. Yang, Y. Liu, and R. Liu, "3D printing of multi-scalable structures via high penetration near-infrared photopolymerization," Nat. Commun. 11, 3462 (2020). https://doi.org/10.1038/s41467-020-17251-z
  32. X. Liu, H. Gu, M. Wang, X. Du, B. Gao, A. Elbaz, L. Sun, J. Liao, P. Xiao, and Z. Gu, "Liquid superrepellents: 3D printing of bioinspired liquid superrepellent structures," Adv. Mater. 30, 1870157 (2018). https://doi.org/10.1002/adma.201870157
  33. H. Ding, Q. Zhang, H. Gu, X. Liu, L. Sun, M. Gu, and Z. Gu, "Controlled microstructural architectures based on smart fabrication strategies," Adv. Func. Mater. 30, 1901760 (2020). https://doi.org/10.1002/adfm.201901760
  34. X. Liu, H. Gu, H. Ding, X. Du, M. Wei, Q. Chen, and Z. Gu, "3D bioinspired microstructures for switchable repellency in both air and liquid," Adv. Sci. 7, 2000878 (2020). https://doi.org/10.1002/advs.202000878
  35. I. A. Paun, C. C. Mustaciosu, M. Mihailescu, B. S. Calin, and A. M. Sandu, "Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing," Sci. Rep. 10, 16418 (2020). https://doi.org/10.1038/s41598-020-73414-4
  36. M. Kaynak, P. Dirix, and M. S. Sakar, "Addressable acoustic actuation of 3D printed soft robotic microsystems," Adv. Sci. 7, 2001120 (2020). https://doi.org/10.1002/advs.202001120
  37. C. C. Alcantara, F. C. Landers, S. Kim, C. De Marco, D. Ahmed, B. J. Nelson, and S. Pane, "Mechanically interlocked 3D multi-material micromachines," Nat. Commun. 11, 5957 (2020). https://doi.org/10.1038/s41467-020-19725-6
  38. Z. Gan, Y. G, R. A. Evans, and M. Gu, "Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size," Nat. Commun. 4, 2061 (2013). https://doi.org/10.1038/ncomms3061
  39. S. Zhang, S. Li, X. Wan, J. Ma, N. Li, J. Li, and Q. Yin, "Ultrafast, high-resolution and large-size three-dimensional structure manufacturing through high-efficiency two-photon polymerization initiators," Addit. Manuf. 47, 102358 (2021).