• 제목/요약/키워드: Femtosecond phenomena

검색결과 10건 처리시간 0.024초

유한요소법을 이용한 레이저 미세 패터닝 공정 해석 (Simulation of Laser Micro Patterning Process Using FEM)

  • 이진호;김병희;이종길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.54-58
    • /
    • 2005
  • Femtosecond laser is the latest generation pulsed laser delivering shortest pulses. Any solid materials can be machined by it. Femtosecond laser micromachining allows highest precision and minimal heat influence within the workpiece. But due to the complex physical phenomena between the laser beam and the workpiece materials, it is very difficult to determine the optimal process conditions in the femtosecond laser micromachining. In this study, a method to simulate the femtosecond laser micromachining process was proposed. And femtosecond laser micro patterning processes of chromium thin film are simulated by the proposed method using a commercial FE code, LS-Dyna. Simulation results were compared with those of experiments.

  • PDF

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석 (Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser)

  • 이성혁;이준식;박승호;최영기
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석 (Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires)

  • 하정홍;김동식
    • 한국레이저가공학회지
    • /
    • 제18권1호
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

극초단 레이저를 이용한 기공성 세라믹 드릴링시 발생하는 레이저빔 산란해석 (Scattering analysis of laser beam drilling in porous ceramic materials)

  • 최해운
    • 한국레이저가공학회지
    • /
    • 제15권4호
    • /
    • pp.6-11
    • /
    • 2012
  • Laser beam can be either absorbed or scattered in porous ceramic material and its optical characteristics need to be understood. Electro-magnetic multiphysics software was used to simulate and understand the actual scattering phenomena in porous materials. 785nm femtosecond laser was irradiated on the surface of ceramic material and strong scattering occurred in drilling process. The computer results showed the scattering and absorption phenomena of Aluminum oxide were a mixture of dielectric and metallic material. The computer simulation showed the laser beam was almost extinct at the aspect rate of 5 approximately.

  • PDF

금속의 펨토초 어블레이션의 수치해석 (Numerical analysis of fs laser ablation of metals)

  • 오부국;김동식;김재구;이제훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.657-658
    • /
    • 2006
  • Although there are many numerical models to simulate fs laser ablation of metals, no model can analyze the ablation phenomena over a wide range of fluence. In this work, a numerical code for simulating the fs laser ablation phenomena of metals has been developed. The two temperature model is employed to predict the ablation rate and the crater shape of metals using phase explosion mechanism in the relatively high fluence regime. Also, the ultrashort thermoelastic model is used for the low fluence regime to account for spallation of the sample by high strain rate. It has been demonstrated that the thermoelastic stress generated within the sample can exceed the yield stress of the material even near the threshold fluence. Numerical computation results are compared with the experiment for Cu and Ni and show good agreement. Discussions are made on the hydrodynamic model considering phase change and hydrodynamic flow.

  • PDF

수동 모드 잠금된 100 MHz Cr4+:YAG 레이저에서의 펨토초 펄스 발생 (Generation of Femtosecond Pulses in a Passively Mode-Locked 100 MHz Cr4+:YAG Laser)

  • 조원배;이상민;김종두;전민용;서호성
    • 한국광학회지
    • /
    • 제16권6호
    • /
    • pp.535-541
    • /
    • 2005
  • $Cr^{4+}:YAG$ 레이저 매질을 사용하여 실온영역에서 안정적으로 수동 모드 잠금된 근적외선 펨토초 레이저를 제작하고, 그 특성을 분석하였다. 공진기 내부에 설치된 프리즘의 조절만으로 손쉬운 파장 조절이 가능하였으며, 연속 발진시 1400 nm부터 1510 nm까지 110 nm 정도, 모드 잠금 경우 1500 nm 부근에서 30 nm 정도의 파장 조절이 가능함을 확인하였다. $1.5 \%$의 투과율을 지닌 출력거울을 사용하였으며, 연속 발진시 흡수 파워가 7.6 W 일 때 최대 810 mW 이상의 출력을 측정하였다. 공진기 내에서 발생된 분산을 보상하기 위하여 적외선용 프리즘 쌍을 사용하였으며, 100 MHz의 반복률에서 푸리에 변환한계에 근접한 64 fs의 극초단 펄스 방출이 가능하였다. 레이저의 중심파장이 1510 nm 일 때 스펙트럼의 반치폭은 44 nm였다. 모드 잠금이 꺼지지 않고 장시간 안정적으로 작동이 가능한 레이저 제작을 위해 공진기 내부의 광 경로에 관을 설치하고 질소가스를 순환시켰으며, 평균출력 250 mW로 최적화하였다.

분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증 (Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation)

  • 석명은;김윤영
    • 한국전산구조공학회논문집
    • /
    • 제32권2호
    • /
    • pp.103-108
    • /
    • 2019
  • 본 논문에서는 비평형 분자동역학 시뮬레이션 기법을 사용하여 알루미늄 박막과 실리콘 웨이퍼 간 열경계저항을 예측하였다. 실리콘의 끝 단 고온부에 열을 공급하고, 같은 양의 열을 알루미늄 끝 단 저온부에서 제거하여 경계면을 통한 열전달이 일어나도록 하였으며, 실리콘 내부와 알루미늄 내부의 선형 온도 변화를 계산함으로써 경계면에서의 온도 차이에 따른 열저항 값을 구하였다. 300K 온도에서 $5.13{\pm}0.17m^2{\cdot}K/GW$의 결과를 얻었으며, 이는 열유속 조건의 변화와 무관함을 확인하였다. 아울러, 펨토초 레이저 기반의 시간영역 열반사율 기법을 사용하여 열경계저항 값을 실험적으로 구하였으며, 시뮬레이션 결과와 비교 검증하였다. 전자빔 증착기를 사용하여 90nm 두께의 알루미늄 박막을 실리콘(100) 웨이퍼 표면에 증착하였으며, 유한차분법을 이용한 수치해석을 통해 열전도 방정식의 해를 구해 실험결과와 곡선맞춤 함으로써 열경계저항을 정량적으로 평가하고 나노스케일에서의 열전달 현상에 관한 특징을 살펴보았다.