DOI QR코드

DOI QR Code

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag

고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석

  • Kim, Jiyoung (Department of Civil and Environmental Engineering, Chung-Ang University) ;
  • Choi, Young Cheol (Department of Architectural Engineering, Gachon University) ;
  • Choi, Seongcheol (Department of Civil and Environmental Engineering, Chung-Ang University)
  • 김지영 (중앙대학교 토목공학과) ;
  • 최영철 (가천대학교 건축공학과) ;
  • 최성철 (중앙대학교 건설환경플랜트공학과)
  • Received : 2016.12.10
  • Accepted : 2016.12.26
  • Published : 2017.02.28

Abstract

This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

본 연구는 시멘트계 재료의 프랙탈 특성에 관한 기초적 연구로써, 고로슬래그 미분말 혼입 시멘트 페이스트의 공극 구조를 수은압입법을 이용하여 측정하였고, 측정된 결과를 프랙탈 모델에 적용하여 그 특성을 분석하였다. 분석 결과, 고로슬래그미분말 혼입 시멘트 페이스트의 공극 구조는 그 범위가 나노미터부터 밀리미터 단위까지 다양하게 분포하는 불규칙한 조직이기 때문에, 전체 영역에 대한 프랙탈 차원을 산정했을 때 각 공극 영역의 특성을 반영할 수 없다. 따라서 프랙탈 차원 산정 시 공극 영역을 나누어서 분석하였다. Zhang and Li (1995) model을 적용했을 때, 시멘트와 GGBFS의 수화반응 결과 생성된 C-S-H 내의 gel pores 및 small capillary pores에 해당하는 micro 영역과 large capillary pores에 해당하는 macro 영역에서 각각 프랙탈 특성이 나타나는 결과를 보였다. 또한 macro 영역보다 micro 영역의 공극 표면이 더 불규칙한 형상을 나타내었다. Ji et al. (1997) model을 적용할 경우, micro 영역이 C-S-H 내의 gel pores에 해당하는 micro I과 small capillary pores에 해당하는 micro II로 구분되었으며, 각각의 프랙탈 특성이 산정되었다. 또한 Zhang and Li (1995) model을 결과와 유사하게, macro, micro II, micro I의 순서대로 공극 크기가 작아질수록 VFD 결과 값이 감소하였으며, 이는 곧 공극의 복잡성이 증가함을 나타낸다.

Keywords

References

  1. Mandelbrot, B. B., Fractals: Form, Chance, and Dimension, WH Freeman and Co, New York, 1979.
  2. Avnir, D., Farin, D., and Pfeifer, P., "Molecular Fractal Surfaces", Nature, Vol. 308, No. 5956, 1984, pp. 261-263. https://doi.org/10.1038/308261a0
  3. Neimark, A. V., "Calculating Surface Fractal Dimensions of Adsorbents", Adsorption Science & Technology, Vol. 7, No. 4, 1990, pp. 210-219. https://doi.org/10.1177/026361749000700402
  4. Pfeifer, P., and Avnir, D., "Chemistry in Noninteger Dimensions Between Two and Three I. Fractal Theory of Heterogeneous Surfaces", The Journal of chemical physics, Vol. 79, No. 7, 1983, pp. 3558-3565. https://doi.org/10.1063/1.446210
  5. Zeng, Q., Li, K., Fen-Chong, T., and Dangla, P., "Surface Fractal Analysis of Pore Structure of High-volume Fly-ash Cement Pastes", Applied Surface Science, Vol. 257, No. 3, 2010, pp. 762-768. https://doi.org/10.1016/j.apsusc.2010.07.061
  6. Won, J. P., and Kim, S. A., "Crack Growth Behaviors of Cement Composites by Fractal Analysis", International Journal of Concrete Structures and Materials, Vol. 14, No. 1, 2002, pp. 30-35.
  7. Monteiro, P., Concrete: Microstructure, Properties, and Materials, McGraw-Hill Publishing, 2006.
  8. Zeng, Q., Luo, M., Pang, X., Li, L., and Li, K., "Surface Fractal Dimension: an Indicator to Characterize the Microstructure of Cement-based Porous Materials" Applied Surface Science, Vol. 282, 2013, pp. 302-307. https://doi.org/10.1016/j.apsusc.2013.05.123
  9. Gao, Y., Wu, K., and Jiang, J., "Examination and Modeling of Fractality for Pore-solid Structure in Cement Paste: Starting from the mercury intrusion porosimetry test", Construction and Building Materials, Vol. 124, 2016, pp. 237-243. https://doi.org/10.1016/j.conbuildmat.2016.07.107
  10. Zhang, B., and Li, S., "Determination of the Surface Fractal for Porous Media by Mercury Porosimetry", Industrial & Engineering Chemistry Research, Vol. 34, No. 4, 1995, pp. 1383-1386. https://doi.org/10.1021/ie00043a044
  11. Ji, X., Chan, S. Y. N., and Feng, N., "Fractal Model for Simulating the Space-filling Process of Cement Hydrates and Fractal Dimensions of Pore Structure of Cement-based Materials", Cement and Concrete Research, Vol. 27, No. 11, 1997, pp. 1691-1699. https://doi.org/10.1016/S0008-8846(97)00157-9
  12. Rootare, H. M., and Prenzlow, C. F., "Surface Areas from Mercury Porosimeter Measurements", The Journal of physical chemistry, Vol. 71, No. 8, 1967, pp. 2733-2736. https://doi.org/10.1021/j100867a057
  13. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman: New York, 1982, pp. 109-115.
  14. Jackson, S. D., Kennedy, D. R., Lennon, D., and Webb, G., "Reaction Kinetics and the Development of Catalytic Processes", Studies in Surface Science and Catalysis, Vol. 122, 1999, pp. 149-155.
  15. Kim, T. S., Jung, S. H., Choi, Y. C., and Song, H. W., "An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete", Journal of the Korea Concrete Institute, Vol. 21, No. 5, 2009, pp. 639-647. https://doi.org/10.4334/JKCI.2009.21.5.639
  16. Li, K., Zeng, Q., Luo, M., and Pang, X., "Effect of Self-desiccation on the Pore Structure of Paste and Mortar Incor-Porating 70% GGBS", Construction and Building Materials, Vol. 51, 2014, pp. 329-337. https://doi.org/10.1016/j.conbuildmat.2013.10.063