• 제목/요약/키워드: Millimeter

Search Result 890, Processing Time 0.025 seconds

Optical Millimeter-wave Signal Generation using Injection Locking Scheme (광주입 방법을 이용한 밀리미터파 신호 생성)

  • Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1076-1081
    • /
    • 2003
  • A new technique for generating millimeter-wave signals from a semiconductor laser is presented. The method multiples the signal frequency by using optical injection of short optical pulses at a sub-harmonic of the cavity round-trip frequency to drive the laser oscillating at its resonant frequency. A 32GHz signal is generated using a multisection semiconductor laser operated under continuous wave conditions, by injection optical pulses at a repetition rate equal to the fourth subhamonic(8GHz). The generated millimeter-wave signal exhibits a large submamonic suppression ratio(>17 dB), large frequency detuning range (>300 MHz) low levels of phase-noise(-77.5 dBc/Hz), and large locking (>400 MHz)

Development of Millimeter-Wave band PLL System using YIG Oscillator (YIG 발진기를 이용한 밀리미터파대역의 PLL 시스템 개발)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.;Han, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.116-119
    • /
    • 2005
  • In this paper, we propose the PLL system of the local oscillator system for the millimeter wave band's radio astronomy receiving system. The development of the proposed local oscillator system based on the YIG oscillator VCO with 26.5 ${\sim}$ 40GHz specification. This system consists of the oscillator part including the YIG VCO, the harmonic mixer, and the isolator, the RF processing part including the triplexer, limiter, and RF discrimination processor. and the PLL system including YIG modulator and controller. Based on this configuration. we verify the frequency and power stability of the developed local oscillator system according to some temperature variation. From this test results we confirm the stable output frequency and power characteristic performance of the developed La system at constant temperature.

  • PDF

A Study on the characteristics of the High Speed Machining for several Tool Materials change of Ellipse Mirror Machining to be used in Millimeter Wave Interferometer System (밀리미터파 간섭계용 타원 반사경의 공구 변화에 따른 고속절삭 특성 연구)

  • Lee, Sang-Yong;Kim, Geon-Hee;Kim, Hyo-Sik;Yang, Soon-Cheol;Hong, Chang-Deoc;Cho, Byung-Moo;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when ellipse mirrors consisted Aluminum alloy were made it the Millimeter-Wave Interferometer System mirror with several tools on the High-Speed Machine. Machining technique for precision machining characteristics of ellipse mirrors consisted Al6061 matter by Ball endmill is reported in this paper., Results of machining on the High-Speed Machine(using NCD(Natural Crystalline diamond), WC and coated TiAlN ${\phi}6mm$ ball endmill tool) had measurement of surface roughness and form accuracy with cutting conditions(the Feed rate, the Depth of cut and the Cutting speed). the Millimeter-Wave Interferometer System ellipse mirror had been machined foundational precision machining characteristics of aluminum.

  • PDF

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WP AN Application in a 0.13-μm Si RF CMOS Technology

  • Kim, Nam-Hyung;Lee, Seung-Yong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.295-301
    • /
    • 2008
  • Recently, the demand on mm-wave (millimeter-wave) applications has increased dramatically. While circuits operating in the mm-wave frequency band have been traditionally implemented in III-V or SiGe technologies, recent advances in Si MOSFET operation speed enabled mm-wave circuits realized in a Si CMOS technology. In this work, a 58 GHz CMOS LC cross-coupled VCO (Voltage Controlled Oscillator) was fabricated in a $0.13-{\mu}m$ Si RF CMOS technology. In the course of the circuit design, active device models were modified for improved accuracy in the mm-wave range and EM (electromagnetic) simulation was heavily employed for passive device performance predicttion and interconnection parasitic extraction. The measured operating frequency ranged from 56.5 to 58.5 GHz with a tuning voltage swept from 0 to 2.3 V. The minimum phase noise of -96 dBc/Hz at 5 MHz offset was achieved. The output power varied around -20 dBm over the measured tuning range. The circuit drew current (including buffer current) of 10 mA from 1.5 V supply voltage. The FOM (Figure-Of-Merit) was estimated to be -165.5 dBc/Hz.

Analysis of Radar Cross Section of the Tank and Its Application at Millimeter Wave W-Band (밀리미터파 W-대역에서 전차의 레이다 단면적 해석 및 응용)

  • Shin, Hokeun;Song, Sung Chan;Kim, Jihyung;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.756-759
    • /
    • 2017
  • In this paper, the radar cross section of a tank is analyzed at millimeter wave W-band. We calculate the radar cross section of the tank using the program based on PO and PTD and the computed results are compared with those of commercial simulator to check the accuracy of computations. The radar cross section is calculated in terms of the incident angle, polarization, and tank with or without cannon. The radar cross section can be reduced by changing the shape of the turret that can be applied to stealth tanks.

A Study of the Estimation Method for the Dielectric Properties of Dielectrics in Millimeter Wave Range using Bethe's Small Hole Coupling (Bethe's Small Hole Coupling을 이용한 유전체의 밀리미터파대 유전특성 평가방법에 관한연구)

  • 이홍열;전동석;한진우;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1085-1089
    • /
    • 2002
  • The circular cavity resonator which can measure the dielectric properties of dielectrics in the Ka-band(26.5GHz∼400Hz) frequency range was designed and fabricated. A structure of the resonator is divided into two equal parts of the length and the dielectric plate sample is placed between two halves. Exciting and detecting of the resonator is Performed by WR28 rectangular waveguides using Bethe's small hole coupling. The GaAs plate sample, whose performance is known to be 13 in millimeter wave range, was used for the verification of the performance of the fabricated circular cavity resonator In the measurement of GaAs single crystal using that resonator, the resonant frequency of the dominant TE$\sub$011/ mode, the permittivity and Q${\times}$f$\sub$0/ were measured as 26.69GHz, 12.9 and 124,000GHz, respectively.

Silicon Based Millimeter-Wave Phased Array System (실리콘 기반의 고주파 위상 배열 시스템에 관한 연구)

  • Kang, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.130-136
    • /
    • 2014
  • This paper reviews the research on silicon based phased array system operating from microwave to millimeter wave frequencies. First, the design of phase shifter using CMOS technology is presented. The passive phase shifter is applied to the transmit/receive module from one to 16 channel in a single chip. The 35 GHz 4-element T/R module consumes less than 200 mW both transmit and receive modes. The architecture can extend to 16-channel operating at 44 GHz, thereby improving transmit power and linearity. The Ku-band 2-antenna 4-element receiver was developed using active phase shifter based on vector sum method. It is important to minimize coupling between beams because the chip contains four independent beams. The method of coupling is presented and verified.

Mobile Hotspot Network System for High-Speed Railway Communications Using Millimeter Waves

  • Choi, Sung-Woo;Chung, Heesang;Kim, Junhyeong;Ahn, Jaemin;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1052-1063
    • /
    • 2016
  • We propose a millimeter wave (MMW)-based mobile hotspot network (MHN) system for application in high-speed railways that is capable of supporting a peak backhaul link throughput of 1 Gbps per train at 400 km/h. The MHN system can be implemented in subways and high-speed trains to support passengers with smart devices and provide access to the Internet. The proposed system can overcome the inherent high path loss in MMW through system designs and high antenna gains. We present a simulation of the system performance that shows that a fixed beamforming strategy can provide high signal-to-interference-plus-noise-ratio similar to those of an adaptive beamforming strategy, with the exception of 15% of the train path in which the network can use link adaptation with low-order modulation formats or trigger a handover to maintain the connection. We also demonstrate the feasibility of the MHN system using a test bed deployed in Seoul subway line 8. The backhaul link throughput varies instantaneously between 200 Mbps and 500 Mbps depending on the SNR variations while the train is running. During the field trial, the smartphones used could make connections through offloading.

W-band MMIC Low Noise Amplifier for Millimeter-wave Seeker using Tuner System (Tuner System을 이용한 밀리미터파 탐색기용 W-band MMIC 저잡음 증폭기)

  • An, Dan;Kim, Sung-Chan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.89-94
    • /
    • 2011
  • In this paper, we developed the W-band MMIC low noise amplifier for the millimeter-wave seeker using the tuner system. The MHEMT devices for MMIC LNA exhibited DC characteristics with a drain current density of 692mA/mm, an extrinsic transconductance of 726mS/mm. The current gain cutoff frequency(fT) and maximum oscillation frequency($f_{max}$) were 195GHz and 305GHz, respectively. The fabricated W-band low noise amplifier represented S21 gain of 7.42dB at 94 GHz and noise figure of 2.8dB at 94.2 GHz.

Development and Performance Test of High Speed Signal Processor for The Millimeter Wave Seeker (밀리미터파 탐색기 고속 신호처리장치 개발 및 시험기)

  • Ha, Chang-Hun;Park, Pan-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.119-127
    • /
    • 2012
  • This paper describes development and performance test of signal processor for the millimeter wave seeker. A ground to air guidance missile is required various beam patterns in order to counteract different kind of target. Therefore, we designed the hardware and software architecture considering flexibility. This signal processor consists of ADC, FPGA, DSP and etc. FPGA provides peripheral interface to DSP and convert digital IF signal to baseband signal. DSP performs signal processing, calculates target's information and controls devices. Each parts' hardware are connected in series and signal processing algorithms for various beam patterns are built in parallel.